In a k bit 2 's complement number, where the bits are indexed from 0 to $k-1$, the weight of the most significant bit (i.e., in position $k-1$), is -2^{k-1}, and the weight of a bit in any position $i(0 \leq i<k-1)$ is 2^{i}. For example, a 3 bit number 101 is evaluated as $-2^{2}+0+2^{0}=-3$ and 011 as $-0+2^{1}+2^{0}=3$. A negatively weighted bit is called a negabit(such as the most significant bit in a 2 's complement number), and a positively weighted bit is called a posibit.

A Fun number system is a positional binary number system, where each bit can be either a negabit, or a posibit. For example consider a 3 -bit fun number system Fun3, where bits in positions 0 , and 2 are posibits, and the bit in position 1 is a negabit. (111) $)_{\text {Fun3 }}$ is evaluated as $2^{2}-2^{1}+1=3$. Now you are going to have fun with the Fun number systems! You are given the description of a k-bit Fun number system Funk, and an integer N (Maybe negative). You should determine the k bits of a representation of N in Funk, or report that it is not possible to represent the given N in the given Funk. For example, a representation of -1 in the Fun3 number system (defined above), is 011 (evaluated as $0-2^{1}+2^{0}$), and representing 6 in Fun3 is impossible.

Input

The first line of the input file contains a single integer $t(0<t \leq 100)$, the number of test cases, followed by the input data for each test case.

Each test case is given in three consecutive lines. In the first line there is a positive integer k $(1 \leq k \leq 64)$. In the second line of a test data there is a string of length k, composed only of letters n, and p, describing the Fun number system for that test data, where each $n(p)$ indicates that the bit in that position is a negabit (posibit). The third line of each test data contains an integer N $\left(-2^{63} \leq N<2^{63}\right)$, the number to be represented in the Funk number by your program.

Output

For each test data, you should print one line containing either a k-bit string representing the given number N in the Funk number system, or the word 'Impossible', when it is impossible to represent the given number.

Sample Input

2
3
pnp
6
4
ppnn
10

Sample Output

Impossible
1110

