Let's define another number sequence, given by the following function:

$$
\begin{aligned}
& f(0)=a \\
& f(1)=b \\
& f(n)=f(n-1)+f(n-2), \quad n>1
\end{aligned}
$$

When $a=0$ and $b=1$, this sequence gives the Fibonacci Sequence. Changing the values of a and b, you can get many different sequences. Given the values of a, b, you have to find the last m digits of $f(n)$.

Input

The first line gives the number of test cases, which is less than 10001. Each test case consists of a single line containing the integers $a b n \mathrm{~m}$. The values of a and b range in $[0,100]$, value of n ranges in $[0,1000000000]$ and value of m ranges in $[1,4]$.

Output

For each test case, print the last m digits of $f(n)$. However, you should NOT print any leading zero.

Sample Input

4
01113
01424
01224
01214

Sample Output

89
4296
7711
946

