You can see in the pictures below that two different circles can have at most four common tangents. Given the center and radius of two circles your job is to find the length of their common tangents and also the points where they touch the two circles.

Input

The input file contains several lines of inputs.
Each line contains six integers $x_{1}\left(-100 \leq x_{1} \leq 100\right)$, $y_{1}\left(-100 \leq y_{1} \leq 100\right)$, $r_{1}\left(0<r_{1} \leq 200\right)$, $x_{2}\left(-100 \leq x_{2} \leq 100\right), y_{2}\left(-100 \leq y_{2} \leq 100\right), r_{2}\left(0<r_{2} \leq 200\right)$. Here $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the coordinates of the center of the first circle and second circle respectively, r_{1} is the radius of the first circle and r_{2} is the radius of the second circle.

Input is terminated by a line containing six zeroes.

Output

For each line of input you should produce one of more lines of output. The description of this output is given below.

First line of the output for each line of input contains an integer n, which denotes the number of different tangents between the two circles. If there is infinite number of tangents between the two circles then the value of n should be ' -1 '. If n is positive then next n lines contains the description of each tangent. The description of the tangent contains five floating-point numbers $S_{x}, S_{y}, T_{x}, T_{y}$, L in a single line. Here $\left(S_{x}, S_{y}\right)$ is the point at which the tangent touches the first circle and $\left(T_{x}, T_{y}\right)$ is the point where the tangent touches the second circle and L is the length of the tangent. All the floating-point numbers have five digits after the decimal point. Errors less than $2 * 10^{-5}$ will be ignored. The tangents should be printed in ascending order of S_{x} and in case of a tie they should be printed in ascending order of S_{y}.

Sample Input

```
10 105 20 20 5
10 10 10 20 20 10
10 105 20 105
000000
```


Sample Output

4

$6.4644713 .5355316 .46447 \quad 23.5355314 .14214$
10.0000015 .0000020 .0000015 .0000010 .00000
13.535536 .4644723 .5355316 .4644714 .14214
15.0000010 .0000015 .0000020 .0000010 .00000

2
2.9289317 .0710712 .9289327 .0710714 .14214
17.071072 .9289327 .0710712 .9289314 .14214

3
10.000005 .0000020 .000005 .0000010 .00000
10.0000015 .0000020 .0000015 .0000010 .00000
15.0000010 .0000015 .0000010 .000000 .00000

