Theorem

For any two integers x and k there exists two more integers p and q such that:

$$
x=p\left\lfloor\frac{x}{k}\right\rfloor+q\left\lceil\frac{x}{k}\right\rceil
$$

It's a fairly easy task to prove this theorem, so we'd not ask you to do that. We'd ask for something even easier! Given the values of x and k, you'd only need to find integers p and q that satisfies the given equation.

Input

The first line of the input contains an integer, $T(1 \leq T \leq 1000)$ that gives you the number of test cases. In each of the following T lines youd be given two positive integers x and k. You can safely assume that x and k will always be less than 10^{8}.

Output

For each of the test cases print two integers: p and q in one line. These two integers are to be separated by a single space. If there are multiple pairs of p and q that satisfy the equation, any one would do. But to help us keep our task simple, please make sure that the values,

$$
p\left\lfloor\frac{x}{k}\right\rfloor \quad \text { and } \quad q\left\lceil\frac{x}{k}\right\rceil
$$

fit in a 64 bit signed integer.

Sample Input

3
52
402
244446

Sample Output

11
11
06

