Don't you think 162456723 very special? Look at the picture below if you are unable to find its speciality. ($a \mid b$ means ' b is divisible by a ')

Figure: Super Numbers
Given n, $m(0<n<m<30)$, you are to find a m-digit positive integer X such that for every i ($n \leq i \leq m$), the first i digits of X is a multiple of i. If more than one such X exists, you should output the lexicographically smallest one. Note that the first digit of X should not be 0 .

Input

The first line of the input contains a single integer $t(1 \leq t \leq 15)$, the number of test cases followed. For each case, two integers n and m are separated by a single space.

Output

For each test case, print the case number and X. If no such number, print ' -1 '.

Sample Input

2
110
329

Sample Output

Case 1: 1020005640
Case 2: -1

