In order to prepare the "The First National ACM School Contest" (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station "Future" and one school (doesn't matter which one) must be connected; in addition, some schools must be connected as well.

You may assume that a school has a reliable source of power if it's connected directly to "Future", or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans - the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major - find the cost of the two cheapest connection plans.

Input

The Input starts with the number of test cases, $T(1<T<15)$ on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, $N(3<N<100)$ the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers A_{i}, B_{i}, C_{i}, where C_{i} is the cost of the connection $\left(1<C_{i}<300\right)$ between schools A_{i} and B_{i}. The schools are numbered with integers in the range 1 to N.

Output

For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S_{1} be the cheapest cost and S_{2} the next cheapest cost. It's important, that $S_{1}=S_{2}$ if and only if there are two cheapest plans, otherwise $S_{1}<S_{2}$. You can assume that it is always possible to find the costs S_{1} and S_{2}.

Sample Input

```
2
5
1375
3451
2419
3 }29
2 542
5431
129
3566
914
124
18}
2 8 11
3 2 8
8 7
8 1
796
9 32
347
364
7 6 2
4 }61
4 5 9
5 6 10
```


Sample Output

