Let the sum of the square of the digits of a positive integer S_{0} be represented by S_{1}. In a similar way, let the sum of the squares of the digits of S_{1} be represented by S_{2} and so on. If $S_{i}=1$ for some $i \geq 1$, then the original integer S_{0} is said to be Happy number. A number, which is not happy, is called Unhappy number. For example 7 is a Happy number since $7 \rightarrow 49 \rightarrow 97 \rightarrow 130 \rightarrow 10 \rightarrow 1$ and 4 is an Unhappy number since $4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4$.

Input

The input consists of several test cases, the number of which you are given in the first line of the input. Each test case consists of one line containing a single positive integer N smaller than 10^{9}.

Output

For each test case, you must print one of the following messages:
Case \#p: N is a Happy number.
Case $\# p$: N is an Unhappy number.
Here p stands for the case number (starting from 1). You should print the first message if the number N is a happy number. Otherwise, print the second line.

Sample Input

3
7

4
13

Sample Output

Case \#1: 7 is a Happy number.
Case \#2: 4 is an Unhappy number.
Case \#3: 13 is a Happy number.

