A partition of a positive integer number m into n elements ($n \leq m$) is a sequence of positive numbers a_{1}, \ldots, a_{n} such that $a_{1}+\ldots+a_{n}=$ m and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Your task is to find a partition of a number m which occupies the k-th position in the lexicographically ordered sequence of all partitions of m into n elements.

The lexicographic ordering among the partitions of a number is de-
 fined as follows. For two partitions a and b of m into n elements such that $a=\left[a_{1}, \ldots, a_{n}\right]$ and $b=\left[b_{1}, \ldots, b_{n}\right]$ we have $a<b$ if and only if there exists an $1 \leq i \leq n$ such that for all $j<i$ we have $a_{j}=b_{j}$ and $a_{i}<b_{i}$. The sequence of all partitions is ordered in increasing lexicographic order and at the first we have the following sequence $1,1, \ldots, 1, m-n+1$.

Input

The first line of input contains a number c giving the number of cases that follow. Each of the subsequent c lines contains three numbers: $1 \leq m \leq 220,1 \leq n \leq 10$ and $1 \leq k$ which is not bigger than the number of partitions of m into n elements.

Output

For each input data set print the k-th partition of m into n elements. Each element of a partition is to be printed in a separate line.

Sample Input

2

943
10101

Sample Output

