Given the vertices of a non-degenerate polygon (no 180-degree angles, zero-length sides, or self-intersection - but not necessarily convex), you must determine how many distinct lines of symmetry exist for that polygon. A line of symmetry is one on which the polygon, when reflected on that line, maps to itself.

Input

Input consists of a description of several polygons.
Each polygon description consists of two lines. The first contains the integer $n(3 \leq n \leq 1000)$, which gives the number of vertices on the polygon. The second contains n pairs of numbers (an x - and a y-value), describing the vertices of the polygon in order. All coordinates are integers from - 1000 to 1000.

Input terminates on a polygon with 0 vertices.

Output

For every polygon described, print out a line saying 'Polygon \#x has y symmetry line(s).', where x is the number of the polygon (starting from 1), and y is the number of distinct symmetry lines on that polygon.

Sample Input

4

```
-1 0 0 2 1 0 0 -1
```

3
$-666-4257-8419282$
3
$-241-5030743-334498$
0

Sample Output

```
Polygon #1 has 1 symmetry line(s).
Polygon #2 has 0 symmetry line(s).
Polygon #3 has 1 symmetry line(s).
```

