Given a positive integer n, you are to find am integer f, such that:

$$
f^{3}=a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}
$$

where all $a_{1}, a_{2}, \ldots, a_{n}$ are distinct positive integers.
For example,
if $n=3$, one valid f is 71 , since $71^{3}=14^{3}+23^{3}+70^{3}=357911$.
if $n=4$, one valid f is 100 , since $100^{3}=56^{3}+58^{3}+67^{3}+69^{3}=1000000$.
Your number f may be big, but it has at most 250 digits.

Input

The first line contains the number of tests $t(1 \leq t \leq 20)$. Each case contains a single line with a positive integer $n(1 \leq n \leq 100)$.

Output

For each test case, print the case number and $n+1$ numbers: $f, a_{1}, a_{2}, \ldots, a_{n}$. If no f exists, print a ' -1 ' and n zeros.

Sample Input

3
3
2
4

Sample Output

Case 1: 71142370
Case 2: -1 00
Case 3: 10056586769

