Preliminaries

(He who has already studied linear algebra may skip this part)
A matrix is composed of $n \times n$ elements. Formally,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

is an $n \times n$ matrix.
For example,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

is a 2×2 matrix.
Two operations on matrices will be used in this problem:

1. $A+k$ (A is an $n \times n$ matrix, k is an integer $)$ all the elements in the MAIN diagonal is added by k. That is

$$
A+k=\left(\begin{array}{cccc}
a_{11}+k & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}+k & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}+k
\end{array}\right)
$$

For example,

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+5=\left(\begin{array}{ll}
6 & 2 \\
3 & 9
\end{array}\right)
$$

$A-k$ is defined $A+(-k)$, so

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-5=\left(\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right)
$$

2. $A * B$ (both A and B are $n \times n$ matrices). Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right)
$$

and

$$
C=A \times B=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right)
$$

then we have:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b 1 j+a_{i 2} b_{2 j}+\cdots+a_{1 n} b_{n j}
$$

For example,

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \times\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right)=\left(\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right)
$$

Well, I have no time to explain why matrix multiplication is defined like this. Please just remember it.

Problem

Find a matrix root of this equation: $\left(A+k_{1}\right)\left(A+k_{2}\right)\left(A+k_{3}\right) \ldots\left(A+k_{m}\right)=0$ where $k_{1}, k_{2}, \ldots, k_{m}$ are distinct integers.

That is, EVERY ELEMENT OF the matrix computed from the left is zero.
For example,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

is a matrix root of the equation $(A+1)(A-5)=0$ since

$$
(A+1)(A-5)=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right) \times\left(\begin{array}{cc}
-4 & 4 \\
2 & -2
\end{array}\right)=\left(\begin{array}{ll}
-8+8 & 8-8 \\
-8+8 & 8-8
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)
$$

It can be proven that there are infinitely many solutions, however, I do not like trivial answer, so your answer must have at least $(n * n) / 2$ non-zero elements.

Input

The first line contains the number of tests $t(1 \leq t \leq 15)$. Each case contains two lines. The first line contains an integer $m(1 \leq m \leq 30)$. The second line contains m integers, representing $k_{1}, k_{2}, \ldots, k_{m}$ respectively. Absolute values of the integers are no greater than 100 .

Output

For each test case, if no answer can be found, print ' -1 '. Otherwise print n, indicating that you found an $n \times n$ matrix root. The following n lines should be the matrix. It is guaranteed that if there is an answer, the smallest possible n is not greater than 50 , so your n should also NOT be greater than 50 . The absolute value of integers you gave should not be larger than 1000 .

Sample Input

2
$\begin{array}{ll}2 & \\ 1 & -5\end{array}$
2
$1-5$

Sample Output

