You may already know magic squares. Here we introduce a more powerful one. Suppose we have a  $5 \times 5$  square filled with numbers from 1 to 25, every number appear EXACTLY once, like this:



the sum of every row, every col, every diagonal (including non-main diagonals) are ALL the same. for example,

14 + 20 + 21 + 2 + 8 = 19 + 8 + 22 + 11 + 5 = 1 + 24 + 17 + 15 + 8 = 19 + 2 + 15 + 23 + 6 = 65.

You may calculate these 20 sums yourself, then, you'll know I am talking about.

This kind of squares (20 sums are ALL the same) is called POWERFUL MAGIC SQUARES. Your task is: given a uncompleted square, count the number of powerful magic squares that can be obtained by completing the square.

## Input

The first line of the input contains a single integer n ( $1 \le n \le 15000$ ), the number of test cases followed. For each case, there are five lines containing the uncompleted squares. Blank squares are represented as '--'. Filled numbers are always between 1 and 25. every test case is followed by a blank line except the last one.

The input format is always correct.

## Output

For each test case, print the case number and the number of squares obtained, like shown below.

## Sample Input

## Sample Output

Case 1: 1 Case 2: 0