All of you know about Gray Code. It is a number code where consecutive numbers are represented by binary patterns that differ in one bit position only. In the following 4 examples of 3 -bit gray code are shown:

$$
\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}
$$

In this problem we will deal with a gray code generation logic. This logic will generate the n-bit gray code using the coding of $(n-1)$ bits. Lets formally define the rules :

- Each gray code has a starting bit pattern. Such as '0 00 ' or '1 0 1', etc.
- An n-bit gray code will have 2^{n} rows and two consecutive rows will differ by only one bit.
- Each bit pattren will be present exactly once.
- Gray code for 1-bit is trivial. Start with a bit and invert it in the next row.
- To construct n-bit gray code keep any of the n bits fixed (either 0 or 1) for the first $2^{(n-1)}$ rows and use ($n-1$)-bit gray code (generated using this logic) for remaining ($n-1$) bits. Then invert the fixed bit for the next $2^{(n-1)}$ rows and also use $(n-1)$-bit gray code for remaining $(n-1)$ bits whose bit pattern of the first row is the same as the bit pattern of the last row of previous $2^{(n-1)}$ rows. For example 2-bit gray code starting with ' 00 ' may be:

| 00 | | 00 |
| :--- | :--- | :--- | :--- |
| 01 | | 10 |
| 11 | Or | 11 |
| 10 | | 01 |

Simmilarly 2-bit gray code starting with '01' may be:

| 01 | | 01 |
| :--- | :--- | :--- | :--- |
| 00 | | 11 |
| 10 | Or | 10 |
| 11 | | 00 |

If you observe carefully, you will see that the 3-bit gray codes given above are also constructed using this logic. Many such gray codes are possible for a particular starting bit pattern. We can order them from 1 to $G(n)$ where $G(n)$ denotes the number of such gray codes for n-bit. In our ordering scheme:

- 1st n-bit gray code has its leftmost bit fixed and it uses 1st $(n-1)$-bit gray code for upper half and also 1st ($n-1$)-bit gray code for lower half.
- $G(n-1)$-th n-bit gray code has its leftmost bit fixed and it uses 1 st $(n-1)$-bit gray code for upper half and $G(n-1)$-th $(n-1)$-bit gray code for lower half.
- $[G(n-1)+1]$-th n-bit gray code has its leftmost bit fixed and it uses 2 nd $(n-1)$-bit gray code for upper half and 1st $(n-1)$-bit gray code for lower half.
- $G(n)$-th n-bit gray code has its rightmost bit fixed and it uses $G(n-1)$-th $(n-1)$-bit gray code for both halves.

You have to find a n-bit gray code for given starting bit pattern and index.

Input

The first line of the input file contains a single integer $N(0<N \leq 1000)$ which denotes the number of inputs. Each of the next N lines contains a string of bits for starting bit pattern and an integer for index. Number of bits will be between 1 to 6 . And the index will be valid.

Output

Print the gray code for the given starting bit pattern and index. Put a blank line between two consecutive sets of inputs.

Sample Input

3
0001
1115
102

Sample Output

000
001
001
011
010
010
110

