
There are situations when you may want to check whether two directories are same or not. (i.e.
Whether they contain same file structure and files inside it.) Although there are several utilities to
perform such comparison, you as a programmer of the BDUX project (A Bangla Linux Platform) is
required to develop another such utility, to check whether two directories contain same content or not.
This may enable the recovery of the broken transaction of files over the network.

Input

The input part is quit complex. Input contains several transactions of directories.
Let us first define “File Object” - A file object can be a directory or a general file.
File object of type directory occur in a format : ‘DIRECTORY NAME <DIR> FN ’, where

DIRECTORY NAME is any valid directory name (at most 255 character) and <DIR> indicating that
this is a directory. The integer FN (at most 65 thousand) indicates the number of files and folders
contained in that directory. The next FN line contains descriptions of FN number of file object.

File object of type general file occur in a format : ‘FILE NAME NByte’. File names are all valid
names and the size of the files are in bytes. No file can be greater than 2 Giga byte.

Each transactions have the following format :

• The first line contains the date for the transaction.

• Root directory of the first directory to compare.

• Description of the first directory.

• Root directory of the second directory to compare.

• Description of the second directory.

Output

The output should be properly formatted using “tabs”. A “tab” for current problem is defined as four
(4) spaces (‘ ’).

A file object should be printed, if required according to the situation described later, using the
following conditions:

• If it is directory print as ‘DIRECTORY NAME <DIR> N object(s)’, where the variable
DIRECTORY NAME is the name of the directory and N is the number of objects present in
that directory.

• If it is a general file print as ‘FILE NAME N byte(s)’, where FILE NAME is the name of
the file and N is the size of the file in bytes.

At first print ‘==== Begin of Comparison ====’ in a single line.
For each transaction print ‘Transaction #’ followed by the transaction number, then the date.
Then generate report for each set of directories, start with a tab value 0:

• Print tab’s. i.e. 4*tab number of spaces.

• Print ‘Comparing "path1" with "path2".’. Replace path1 with the first directory, and path2
with the second directory.

• For each file object

– If they have totally different content, print tab number of tabs and report ‘Totally different.’,
then return.

– If both have a common directory descend in that directory, with tab+1 and start comparing.

– If both have a file name in common but different file size, print tabs of tab+ 1 amount, re-
port it immediately, in the format: ‘File size mismatch : "PATH 1/FILE NAME 1
(FILE SIZE 1)" and "PATH 2/FILE NAME 2 (FILE SIZE 2)".’

– Report the file that is in path2 but not in path1

∗ Print tab+ 1 tabs.

∗ For each object print tab + 2 tabs and this file object according to the rule described
previously.

– Report the file that is in path1 but not in path2

∗ Print tab+ 1 tabs.

∗ For each object print tab + 2 tabs and this file object according to the rule described
previously.

• If each file object in path1 equals to each file object in path2, print tab’s, print ‘No difference.’

• Otherwise print tab’s, print ‘Difference(s) encountered.’

Print a blank line after each transaction except the last one. Output should be sorted according
to the input. The common File Objects of any two directories to compare are in the same order. You
must use longest common subsequences of the file names in the two directory content to get common
file names.

At the end print ‘==== End of Comparison ====’ in a single line. See the sample output below.

Sample Input

12/23/2001

/usr/bin

suman <DIR> 7

BigBro <DIR> 2

1.exe 987

2.exe 987

NewFile 109

directory <DIR> 3

hi 108

thisFile 203

xlog <DIR> 1

xlog.log 111

extra 1029

underConstruction <DIR> 3

index.html 12395

p0.html 1333

p1.html 2287

wrt.doc 1987

zlib <DIR> 0

/home

suman <DIR> 8

AAA.dat 60000

BigBro <DIR> 2

3.exe 387

4.exe 223

NewFile 109

directory <DIR> 3

hi 108

thisFile 203

xlog <DIR> 1

xlog.log 111

extra 1029

underConstruction <DIR> 3

index.html 11005

p0.htm 1333

p1.htm 2287

wrt.doc 1987

zLib <DIR> 2

bin <DIR> 2

gzip 299

gzip.log 300

zlib.so 23098

10/3/2002

/CDrive

ACMHelper <DIR> 1

acmhelper.exe 100

/tmp

Helper <DIR> 1

acmhelper.exe 100

11/2/2000

/CDrive

Prog <DIR> 2

ACMHelper <DIR> 1

acmhelper.exe 100

newDoc.rtf 2024

/tmp

CopyProg <DIR> 2

Helper <DIR> 1

acmhelper.exe 100

noname.c 1002

Sample Output

==== Begin of Comparison ====

Transaction #1 : Date 12/23/2001

Comparing "/usr/bin/suman" with "/home/suman".

Comparing "/usr/bin/suman/BigBro" with "/home/suman/BigBro".

Totally different.

Comparing "/usr/bin/suman/directory" with "/home/suman/directory".

Comparing "/usr/bin/suman/directory/xlog" with "/home/suman/directory/xlog".

No difference.

No difference.

Comparing "/usr/bin/suman/underConstruction" with "/home/suman/underConstruction".

File size mismatch : "/usr/bin/suman/underConstruction/index.html (12395)" ...

... and "/home/suman/underConstruction/index.html (11005)".

"/usr/bin/suman/underConstruction" lacks of following file(s)

p0.htm 1333 byte(s)

p1.htm 2287 byte(s)

"/home/suman/underConstruction" lacks of following file(s)

p0.html 1333 byte(s)

p1.html 2287 byte(s)

Difference(s) encountered.

"/usr/bin/suman" lacks of following file(s)

AAA.dat 60000 byte(s)

zLib <DIR> 2 object(s)

"/home/suman" lacks of following file(s)

zlib <DIR> 0 object(s)

Difference(s) encountered.

Transaction #2 : Date 10/3/2002

Comparing "/CDrive/ACMHelper" with "/tmp/Helper".

No difference.

Transaction #3 : Date 11/2/2000

Comparing "/CDrive/Prog" with "/tmp/CopyProg".

Totally different.

==== End of Comparison ====


