A Polynomial equation of degree n is defined as follows :

$$
C_{0}+\sum_{i=1}^{n}\left(C_{i} * x^{i}\right)=0
$$

A polynomial equation of n degree can have at most n distinct roots which may be both real or complex. Such as a quadratic equation :

$$
x^{2}-5 x+6=0
$$

has two roots 2 and 3 . In this problem you have to generate such a polynomial equation whose roots are already given.

Input

The input will start with a positive integer N indicating the number of roots of the polynomial equation. The next line will contain the roots each of which is an integer. N will not exceed 50 .

Input is terminated by EOF.

Output

You have to show the polynomial using x as a variable. If coefficient of any term $x^{i}(i>0)$ becomes zero then you need not show that term. In case of coeffecient being 1 only print $x^{\wedge} i(i>0)$. Again if the constant term is zero always use ' +0 '. See sample output for more clarification.

You can be sure that no coeffecient will exceed 10^{15}.

Sample Input

2
23
2
-2 -3
3
0 1-1

Sample Output

$\mathrm{x}^{\wedge} 2-5 \mathrm{x}+6=0$
$x^{\wedge} 2+5 x+6=0$
$x^{\wedge} 3-x+0=0$

