Given a prime $P, 2 \leq P<2^{31}$, an integer $B, 2 \leq B<P$, and an integer $N, 2 \leq N<P$, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

$$
B^{L}==N(\bmod P)
$$

Input

Read several lines of input, each containing P, B, N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print ' 'no solution''.

Note: The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

$$
B^{P-1}==1(\bmod P)
$$

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and $P-1$. A corollary to Fermat's theorem is that for any m

$$
B^{-m}==B^{P-1-m}(\bmod P)
$$

Sample Input

521
522
523
524
531
532
533
534
541
542
543
544
1234570121111111
1111111121655371111111111

Sample Output

0

1

3
2
0
3
1

2
0
no solution
no solution
1
9584351
462803587

