Given a prime $P, 2 \leq P < 2^{31}$, an integer $B, 2 \leq B < P$, and an integer $N, 2 \leq N < P$, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

$$B^L == N \pmod{P}$$

Input

Read several lines of input, each containing P, B, N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print ''no solution''.

Note: The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

$$B^{P-1} == 1 \pmod{P}$$

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P - 1. A corollary to Fermat's theorem is that for any m

$$B^{-m} == B^{P-1-m} (mod \ P)$$

Sample Input

5	2	1		
5	2	2		
5	2	3		
5	2	4		
5	3	1		
5	3	2		
5	3	3		
5	3	4		
5	4	1		
5	4	2		
5	4	3		
5	4	4		
12345701 2 1			111111	1
1111111121 65537 1111111111				

Sample Output

