You are given an elliptical shaped land and you are asked to choose $n$ arbitrary points on its boundary. Then you connect all these points with one another with straight lines (that's $n *(n-1) / 2$ connections for $n$ points). What is the maximum number of pieces of land you will get by choosing the points on the boundary carefully?


Fig: When the value of $n$ is 6

## Input

The first line of the input file contains one integer $S(0<S<3500)$, which indicates how many sets of input are there. The next $S$ lines contain $S$ sets of input. Each input contains one integer $N$ $\left(0 \leq N<2^{31}\right)$.

## Output

For each set of input you should output in a single line the maximum number pieces of land possible to get for the value of $N$.

## Sample Input

## Sample Output

