Randy Company has $N(1 \leq N \leq 100)$ storages. Company wants some men to keep them safe. Now there are $M(1 \leq M \leq 30)$ men asking for the job. Company will choose several from them. Randy Company employs men following these rules:

1. Each keeper has a number $P_{i}\left(1 \leq P_{i} \leq 1000\right)$, which stands for their ability.
2. All storages are the same as each other.
3. A storage can only be lookd after by one keeper. But a keeper can look after several storages. If a keeper's ability number is P_{i}, and he looks after K storages, each storage that he looks after has a safe number $U_{j}=P_{i} \div K$.(Note: U_{j}, P_{i} and K are all integers). The storage which is looked after by nobody will get a number 0 .
4. If all the storages is at least given to a man, company will get a safe line $L=\min U_{j}$
5. Every month Randy Company will give each employed keeper a wage according to his ability number. That means, if a keeper's ability number is P_{i}, he will get P_{i} dollars every month. The total money company will pay the keepers every month is Y dollars.

Now Randy Company gives you a list that contains all information about N, M, P, your task is give company a best choice of the keepers to make the company pay the least money under the condition that the safe line L is the highest.

Input

The input file contains several scenarios. Each of them consists of 2 lines:
The first line consists of two numbers (N and M), the second line consists of M numbers, meaning $P_{i}(i=1 . . M)$. There is only one space between two border numbers.

The input file is ended with $N=0$ and $M=0$.

Output

For each scenario, print a line containing two numbers $L(\max)$ and $Y(\min)$. There should be a space between them.

Sample Input

21
7
12
109
25
108641
54
1111
00

Sample Output

37
1010
818
00

