The problem is to calculate the coefficients in expansion of polynomial $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}$.

Input

The input will consist of a set of pairs of lines. The first line of the pair consists of two integers n and k separated with space $(0<K, N<13)$. This integers define the power of the polynomial and the amount of the variables. The second line in each pair consists of k non-negative integers n_{1}, \ldots, n_{k}, where $n_{1}+\ldots+n_{k}=n$.

Output

For each input pair of lines the output line should consist one integer, the coefficient by the monomial $x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}$ in expansion of the polynomial $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}$.

```
Sample Input
2 }
1
212
100000000010
```


Sample Output

2

