National Construction and Project Centre (NCPC) and the Bureau of Civil Engineering Works (BCEW) have been given the authority of testing and certifying the quality of rods used in construction works in the country. The Get and Do construction company has recently got a contract of construction at different sites of the country. Before the construction can start they want to get the rods from their n sites tested either at $N C P C$ or at $B C E W$. Get and Do has got the permission of testing T_{1} rods at $N C P C$ and T_{2} at $B C E W$. There are m_{i} samples at site $i(1 \leq i \leq n)$. Sum total of these samples over all the n sites is just equal to $\left(T_{1}+T_{2}\right)$. The cost of testing j items from site i at $N C P C$ is $C_{i, j, 1}$ and that of testing at $B C E W$ is $C_{i, j, 2}$. Write a program to find a minimum cost testing schedule for the Get and Do company.

Input

The input may contain multiple test cases. The first line of each test case contains the two nonnegative integers T_{1} and $T_{2}\left(1 \leq T_{1}+T_{2} \leq 300\right)$. The next line contains $n(1 \leq n \leq 30)$. Then follow $3 n$ lines. For $1 \leq i \leq n$, line $(3 i-2)$ contains the value of $m_{i}\left(1 \leq m_{i} \leq 20\right)$, line ($3 i-1$) contains mi nonnegative integers $C_{i, j, 1}\left(1 \leq j \leq m_{i}\right)$ and line $3 i$ contains m_{i} nonnegative integers $C_{i, j, 2}\left(1 \leq j \leq m_{i}\right)$. You may assume that $0 \leq C_{i, j, 1}, C_{i, j, 2} \leq 1000$.

A test case containing two zeros for T_{1} and T_{2} terminates the input, and this case must not be processed.

Output

For each test case in the input print two lines. The first line contains an integer giving the minimum cost for testing all the samples at $N C P C$ and $B C E W$. The next line contains n integers with two consecutive integers separated by a single space. The i-th integer gives the numbers of samples from site i that are tested at $N C P C$ (it is implicit that the rest are tested at $B C E W$). Note that the second output line is not unique, and hence any optimal testing schedule is acceptable.

Print a blank line after the outputs of each test case.

Sample Input

```
10 12
5
5
10 30 70 150 310
10 20 40 60 180
7
3060 90 120 160 200 240
2060100130160 200 240
4
4060 80 100
3070 100 120
3
60 120 180
20 50 90
3
3070 100
3070 100
O
```


Sample Output

580
13402

