A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Formally, given a sequence $X=x_{1} x_{2} \ldots x_{m}$, another sequence $Z=z_{1} z_{2} \ldots z_{k}$ is a subsequence of X if there exists a strictly increasing sequence $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle$ of indices of X such that for all $j=1,2, \ldots, k$, we have $x_{i_{j}}=z_{j}$. For example, $Z=b c d b$ is a subsequence of $X=a b c b d a b$ with corresponding index sequence $\langle 2,3,5,7\rangle$.

In this problem your job is to write a program that counts the number of occurrences of Z in X as a subsequence such that each has a distinct index sequence.

Input

The first line of the input contains an integer N indicating the number of test cases to follow. The first line of each test case contains a string X, composed entirely of lowercase alphabetic characters and having length no greater than 10,000 . The second line contains another string Z having length no greater than 100 and also composed of only lowercase alphabetic characters. Be assured that neither Z nor any prefix or suffix of Z will have more than 10100 distinct occurrences in X as a subsequence.

Output

For each test case in the input output the number of distinct occurrences of Z in X as a subsequence.
Output for each input set must be on a separate line.

Sample Input

2

babgbag
bag
rabbbit
rabbit

Sample Output

5
3

