In this problem we will be considering a game played with four wheels. Digits ranging from 0 to 9 are printed consecutively (clockwise) on the periphery of each wheel. The topmost digits of the wheels form a four-digit integer. For example, in the following figure the wheels form the integer 8056. Each wheel has two buttons associated with it. Pressing the button marked with a left arrow rotates the wheel one digit in the clockwise direction and pressing the one marked with the right arrow rotates it by one digit in the opposite direction.

The game starts with an initial configuration of the wheels. Say, in the initial configuration the topmost digits form the integer $S_{1} S_{2} S_{3} S_{4}$. You will be given some (say, n) forbidden configurations $F_{i_{1}} F_{i_{2}} F_{i_{3}} F_{i_{4}}(1 \leq i \leq n)$ and a target configuration $T_{1} T_{2} T_{3} T_{4}$. Your job will be to write a program that can calculate the minimum number of button presses required to transform the initial configuration to the target configuration by never passing through a forbidden one.

Input

The first line of the input contains an integer N giving the number of test cases to follow.
The first line of each test case contains the initial configuration of the wheels specified by 4 digits. Two consecutive digits are separated by a space. The next line contains the target configuration. The third line contains an integer n giving the number of forbidden configurations. Each of the following n lines contains a forbidden configuration. There is a blank line between two consecutive input sets.

Output

For each test case in the input print a line containing the minimum number of button presses required. If the target configuration is not reachable then print ' -1 '.

Sample Input

2
8056
6508
5
8057
8047
5508
7508
6408

0000
5317
8
0001
0009
0010
0090
0100
0900
1000
9000

Sample Output

