Ouroboros was a mythical snake in Ancient Egypt. It has its tail inside its mouth and continuously
devours itself.

Ouroboros numbers are binary numbers of 2™ bits that have the property of generating the whole
set of numbers from 0 to 2" — 1 as follows: To produce all of them we place the 2™ bits wrapped in a
circle so that the last bit goes before the first one. Then we can denote all 2™ different strings with n
bits starting each time with the next bit in the circle.

For example, for n = 2 there are only four Ouroboros numbers. These are 0011, 0110, 1100 and
1001. For 0011, the following diagram and table depicts the process of finding all the bitstrings:

| k[00110011... [o(n = 2,k) |
0] 00 0
1] o1 1
2 11 3
3 10 2

Your program will compute the function o(n, k), where n > 0 and 0 < k < 2". This function
calculates the k-th number inside the smallest Ouroboros number of size n-bits.
Input

The input starts with a line containing the number of test cases. For each test case you will be given
a line with two integers n (0 < n < 22) and k (0 < k < 2").

Output

For every test case your output must evaluate the function o(n, k) and print the result on a line by
itself.

Sample Input

NN NN D
wWw N = O

Sample Output

N W=

