A certain computer has 10 registers and 1000 words of RAM. Each register or RAM location holds a 3 -digit integer between 0 and 999. Instructions are encoded as 3 -digit integers and stored in RAM. The encodings are as follows:

- 100 means halt
- $2 d n$ means set register d to n (between 0 and 9)
- $3 d n$ means add n to register d
- $4 d n$ means multiply register d by n
- $5 d s$ means set register d to the value of register s
- $6 d s$ means add the value of register s to register d
- $7 d s$ means multiply register d by the value of register s
- $8 d a$ means set register d to the value in $R A M$ whose address is in register a
- 9sa means set the value in RAM whose address is in register a to the value of register s
- Ods means goto the location in register d unless register s contains 0

All registers initially contain 000 . The initial content of the RAM is read from standard input. The first instruction to be executed is at RAM address 0 . All results are reduced modulo 1000.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input to your program consists of up to 1000 3-digit unsigned integers, representing the contents of consecutive RAM locations starting at 0 . Unspecified RAM locations are initialized to 000 .

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

The output from your program is a single integer: the number of instructions executed up to and including the halt instruction. You may assume that the program does halt.

Sample Input

1

299
492
495
399
492
495
399
283
279
689
078
100
000
000
000

Sample Output

