
APL is an array programming language that uses a notation invented by Ken Iverson in 1957. In this
problem we consider only a small subset of the language which we call apl (that is, small APL).

Each apl expression appears on a line by itself and each expression has a value, which is displayed
immediately after the expression is entered. Operators in apl do not have precedence like those in
C, C++, or Java, but instead are applied right to left. However, parentheses may be used to control
evaluation order. Similarly, operands for binary operators are evaluated in right to left order. Here are
some examples of apl expressions.

var = 1 2 3 Store the vector 1 2 3 in var, replacing its previous value. The
value of the expression is 1 2 3. The left operand of the =

operator must be a variable.

var + 4 Display the value of var with 4 added to each of its elements
(result: 5 6 7); the stored version of var is not modified.

- / var Display the value of var as if a - operator had been
inserted between each of its elements on each row (result: 2). If var
has two dimensions, the result is a vector. If var has three
dimensions, the result is a two-dimensional array. * / and
+ / have analogous behaviors.

iota 5 Generate a vector with the values 1 2 3 4 5.

2 2 rho 1 2 3 4 Reshape the vector 1 2 3 4 into a 2 by 2 array; 1 and 2 are in
the first row, and 3 and 4 are in the second row.

2 2 rho 1 2 3 4 5 6 Same result as above.

2 3 rho 1 2 3 4 Another reshaping, yielding a first row with 1 2 3 and a second
row with 4 1 2; if the right argument does not have a sufficient
number of elements, then the elements of the right operand are
reused starting from the beginning, in row-major order.

2 drop iota 5 Result: 3 4 5. Drops the two leading elements from iota 5.

1 2 * 3 4 Result: 3 8. Illustrates element-wise multiplication. Operands
must be conformable - either they have the same shape, or at least
one must be a one-element vector (see second example).

((a = 1) drop 1 2 3) - 5 Result: -3 -2. Illustrates use of parentheses.

a + (a = 5) + a + (a = 6) Result: 22. Illustrates evaluation order

In this problem you are to write an interpreter for apl. Integers in the input are non-negative and
less than 104. All computed integer values (including intermediate values) have absolute values less
than 104. The number of entries in any matrix is always less than or equal to 104. Variable names
consist of one to three alphabetic lowercase characters, and the names iota, rho, and drop are always
interpreted as operators. Exactly one space separates elements of statements (constants, variables,
operators, and parentheses).

Constants in the input are vectors. All intermediate values are one, two, or three-dimensional
arrays with positive dimensions. This restricts some operand ranges: “2 0 rho 1 2 3”, “2 3 2 1

rho 5”, and “3 drop iota 3” are illegal. The only arithmetic operators provided are + (addition), -
(subtraction), and * (multiplication). Their operands are conformable as illustrated in the examples.
Observe that “1 1 rho 1” and “1 rho 1” have different shapes. The operand for iota evaluates to a
one-element positive vector. The left operand of drop evaluates to a one-element non-negative vector
and its right operand evaluates to a vector. Both operands of rho evaluate to vectors.

Input

The input contains several test cases, each on a line by itself. The values of variables assigned in one
test case are available for use in following test cases. No expression exceeds 80 characters in length,
including space characters. No test case produces an invalid result (for example, an empty vector).

The last test case is followed by a line containing the single character ‘#’.

Output

For each test case, display a line containing the case number and the input line. Then, starting on the
next line, display the result of evaluating the expression. Vectors display as a single line of integers;
m × n arrays display as m lines of n values, and m × n × p arrays display as m arrays of size n × p,
with a blank line separating the n × p arrays. Values on the same line should be separated by white
space as shown in the sample output.

Sample Input

var = 1 2 3

var + 4

- / var

iota 5

2 2 rho 1 2 3 4

2 3 rho 1 2 3 4

2 drop iota 4

1 2 * 3 4

((a = 1) drop 1 2 3) - 5

a + (a = 5) + a + (a = 6)

(2 2 rho 2 drop iota 6) + 100

1 2 3 + 4 5 6

2 3 rho 1 2 3 4 5 + 1 2 3 4 5

+ / 2 3 4 rho iota 2 * 3 * 4

(2 4 5 rho iota 2 * 4 * 5) - 99

#

Sample Output

Case 1: var = 1 2 3

1 2 3

Case 2: var + 4

5 6 7

Case 3: - / var

2

Case 4: iota 5

1 2 3 4 5

Case 5: 2 2 rho 1 2 3 4

1 2

3 4

Case 6: 2 3 rho 1 2 3 4

1 2 3

4 1 2

Case 7: 2 drop iota 4

3 4

Case 8: 1 2 * 3 4

3 8

Case 9: ((a = 1) drop 1 2 3) - 5

-3 -2

Case 10: a + (a = 5) + a + (a = 6)

22

Case 11: (2 2 rho 2 drop iota 6) + 100

103 104

105 106

Case 12: 1 2 3 + 4 5 6

5 7 9

Case 13: 2 3 rho 1 2 3 4 5 + 1 2 3 4 5

2 4 6

8 10 2

Case 14: + / 2 3 4 rho iota 2 * 3 * 4

10 26 42

58 74 90

Case 15: (2 4 5 rho iota 2 * 4 * 5) - 99

-98 -97 -96 -95 -94

-93 -92 -91 -90 -89

-88 -87 -86 -85 -84

-83 -82 -81 -80 -79

-78 -77 -76 -75 -74

-73 -72 -71 -70 -69

-68 -67 -66 -65 -64

-63 -62 -61 -60 -59

