
Mobile phones have changed our lifestyle dramatically in the last decade. Mobile phones have a variety
of protocols to connect with one another. One of the most popular networks for mobile phones is the
GSM (Global System for Mobile Communication) network.

Figure: Cities here are represented by squares and
BTS towers by trapezoids. Solid lines are roads.

The dotted lines show 9 different cells. The
minimum number of switches required to go from
city 1 to city 6 is (2+1+0)=3. Note that city 7 is

isolated and cannot be reached.

In a typical GSM network, a mobile
phone connects with the nearest BTS (Base
Transceiver Station). A BSC (Base Station Cen-
ter) controls several BTSs. Several BSCs are
controlled by one MSC (Mobile Services Switch-
ing Center), and this MSC maintains a connec-
tion with several other MSCs, a PSTN (Public
Switched Telecom Network) and an ISDN (Inte-
grated Services Digital Network).

This problem uses a simplified model of the
conventional GSM network. Our simplified net-
work is composed of up to fifty BTS towers.
When in use, a mobile phone always connects
to its nearest BTS tower. The area covered by
a single BTS tower is called a cell. When an
active mobile phone is in motion, as it crosses
cell boundaries it must seamlessly switch from
one BTS to another. Given the description of
a map consisting of cities, roads and BTS tow-
ers, you must determine the minimum number
of BTS switches required to go from one city to
another.

Each tower and each city location is to be
considered as a single point in a two-dimensional
Cartesian coordinate system. If there is a road
between two cities, assume that the road is a
straight line segment connecting these two cities. For example, in the figure, traveling on the road from
city 1 to city 2 will cross two cell boundaries and thus requires two switches. Traveling from city 2 to
city 5 crosses one cell boundary and traveling from city 5 to city 6 requires no switch. Traveling this
route from city 1 to city 6 requires three total switches. Note than any other path from city 1 to city
6 requires more than three switches. If there is more than one possible way to get from one city to
another, your program must find the optimal route.

Input

The input file contains several test cases. The first line of each test case contains four integers: B(1 ≤
B ≤ 50), the number of BTS towers; C(1 ≤ C ≤ 50), the number of cities; R(0 ≤ R ≤ 250), the
number of roads; and Q(1 ≤ Q ≤ 10), the number of queries. Each of the next B lines contains
two floating-point numbers x and y, the Cartesian coordinates of a BTS tower. Each of the next C
lines contains two floating-point numbers xi, yi that indicate the Cartesian coordinates of the ith city
(1 ≤ i ≤ C). Each of the next R lines contains two integers m and n (1 ≤ m,n ≤ C), which indicate
that there is a road between the m-th and the n-th city. Each of the next Q lines contains two integers
s and d (1 ≤ s, d ≤ C), the source and destination cities.

No coordinate will have an absolute value greater than 1000. No two towers will be at the same
location. No two cities will be at the same location, and no city will lie on a cell boundary. No road
will be coincident with a cell boundary, nor contain a point lying on the boundary of three or more
cells.

The input will end with a line containing four zeros.

Output

For each input set, you should produce Q + 1 lines of output, as shown below. The first line should
contain the number of the test case. Q lines should follow, one for each query, each containing an
integer indicating the minimum number of switches required to go from city s to city d. If it is not
possible to go from city s to city d, print the line ‘Impossible’ instead.

Sample Input

9 7 6 2

5 5

15 5

25 5

5 15

15 15

25 15

5 25

15 25

25 25

8 2

22 3

8 12

18 18

22 12

28 16

28 8

1 2

1 3

2 5

3 4

4 5

5 6

1 6

1 7

0 0 0 0

Sample Output

Case 1:

3

Impossible


