
Simulation is an important application area in computer science involving the development of computer
models to provide insight into real-world events. There are many kinds of simulation including (and
certainly not limited to) discrete event simulation and clock-driven simulation. Simulation often involves
approximating observed behavior in order to develop a practical approach.

This problem involves the simulation of a simplistic pinball machine. In a pinball machine, a steel ball
rolls around a surface, hitting various objects (bumpers) and accruing points until the ball “disappears”
from the surface.

You are to write a program that simulates an idealized pinball machine. This machine has a flat
surface that has some obstacles (bumpers and walls). The surface is modeled as an m × n grid with
the origin in the lower-left corner. Each bumper occupies a grid point. The grid positions on the edge
of the surface are walls. Balls are shot (appear) one at a time on the grid, with an initial position,
direction, and lifetime.

In this simulation, all positions are integral, and the ball’s direction is one of: up, down, left, or
right. The ball bounces around the grid, hitting bumpers (which accumulates points) and walls (which
does not add any points). The number of points accumulated by hitting a given bumper is the value
of that bumper. The speed of all balls is one grid space per timestep. A ball “hits” an obstacle during
a timestep when it would otherwise move on top of the bumper or wall grid point. A hit causes the
ball to “rebound” by turning right (clockwise) 90 degrees, without ever moving on top of the obstacle
and without changing position (only the direction changes as a result of a rebound). Note that by this
definition sliding along a wall does not constitute “hitting” that wall.

A ball’s lifetime indicates how many time units the ball will live before disappearing from the
surface. The ball uses one unit of lifetime for each grid step it moves. It also uses some units of lifetime
for each bumper or wall that it hits. The lifetime used by a hit is the cost of that bumper or wall. As
long as the ball has a positive lifetime when it hits a bumper, it obtains the full score for that bumper.
Note that a ball with lifetime one will “die” during its next move and thus cannot obtain points for
hitting a bumper during this last move. Once the lifetime is non-positive (less than or equal to zero),
the ball disappears and the game continues with the next ball.

Input
Your program should simulate one game of pinball. There are several input lines that describe the
game. The first line gives integers m and n, separated by a space. This describes a cartesian grid where
1 ≤ x ≤ m and 1 ≤ y ≤ n on which the game is “played”. It will be the case that 2 < m < 51 and
2 < n < 51. The next line gives the integer cost for hitting a wall. The next line gives the number of
bumpers, an integer p ≥ 0.

The next p lines give the x position, y position, value, and cost, of each bumper, as four integers
per line separated by space(s). The x and y positions of all bumpers will be in the range of the grid.
The value and cost may be any integer (i.e., they may be negative; a negative cost adds lifetime to a
ball that hits the bumper).

The remaining lines of the file represent the balls. Each line represents one ball, and contains four
integers separated by space(s): the initial x and y position of the ball, the direction of movement, and
its lifetime. The position will be in range (and not on top of any bumper or wall). The direction will
be one of four values: 0 for increasing x (right), 1 for increasing y (up), 2 for decreasing x (left), and 3
for decreasing y (down). The lifetime will be some positive integer.

Output
There should be one line of output for each ball giving an integer number of points accumulated by
that ball in the same order as the balls appear in the input. After all of these lines, the total points for
all balls should be printed.

Sample Input
4 4
0
2
2 2 1 0
3 3 1 0
2 3 1 1
2 3 1 2
2 3 1 3
2 3 1 4
2 3 1 5

Sample Output
0
0
1
2
2
5


