Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.

This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of $a^{n}+b^{n}=c^{n}$ for $n>2$.

Given a positive integer $N$, you are to write a program that computes two quantities regarding the solution of

$$
x^{2}+y^{2}=z^{2}
$$

where $x, y$, and $z$ are constrained to be positive integers less than or equal to $N$. You are to compute the number of triples $(x, y, z)$ such that $x<y<z$, and they are relatively prime, i.e., have no common divisor larger than 1 . You are also to compute the number of values $0<p \leq N$ such that $p$ is not part of any triple (not just relatively prime triples).

## Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to $1,000,000$. Input is terminated by end-of-file.

## Output

For each integer $N$ in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is $\leq N$ ). The second number is the number of positive integers $\leq N$ that are not part of any triple whose components are all $\leq N$. There should be one output line for each input line.

## Sample Input

10
25
100

## Sample Output

14
49
1627

