
XXXVII Maratón Nacional de Programación
Colombia - ACIS / REDIS / CCPL 2023

ICPC

Problems
(This set contains 10 problems; problem pages are numbered from 1 to 17)

A: ASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B: Be Strong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

C: Knights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

D: Robot Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

E: LISP Extravaganza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

F: Finding Common Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

G: Grain Silos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

H: Match Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I: Stack Solitaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

J: TNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0



General Information. Unless otherwise stated, the conditions stated below hold for all the problems. How-
ever, since some problems may have specific requirements, it is important to read the problem statements
carefully.

Program name. Each source file (your solution!) must be called

<codename>.c, <codename>.cpp, <codename>.java, or <codename>.py

as instructed below each problem title.

Input.

1. The input must be read from the standard input.

2. In most problems, the input can contain several test cases. Each test case is described using a number of
lines specific to the problem.

3. In most cases, when a line of input contains several values, they are separated by single blanks. No other
spaces appear in the input and there are no empty lines.

4. Every line, including the last one, has the usual end-of-line mark.

5. If no end condition is given, then the end of input is indicated by the end of the input stream. There is no
extra data after the test cases in the input.

Output.

1. The output must be written to the standard output.

2. The result of each test case must appear in the output using a number of lines, which depends on the
problem.

3. When a line of results contains several values, they must be separated by single spaces. No other spaces
should appear in the output. There should be no empty lines.

4. Every line, including the last one, must have the usual end-of-line mark.

5. After the output of all test cases, no extra data must be written to the output.

6. To output real numbers, if no particular instructions are given, round them to the closest rational with the
required number of digits after the decimal point. Ties are resolved rounding to the nearest upper value.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 1

A: ASP
Source file name: asp.c, asp.cpp, asp.java, or asp.py

Author: Rodrigo Cardoso

John is worried about the passwords he uses for his internet activities. He decided to build his passwords
according to some rules that he considers safe enough. He calls each one of these passwords an asp (for a safe
password).

Suppose that A is a given asp. A subasp of A is any word that corresponds to a sequence of two or more
consecutive symbols in A.

John’s conditions for an asp A are rather simple:

• A is a word built from an alphabet of N symbols.

• It is not possible to find a subasp of A more than once within it.

• No two consecutive symbols in A are the same.

For instance, if the given alphabet is {a, b, c, d}, it is possible to build asps like abac, abcbdadb and bcbadb. On
the other hand, baac, abcdcabcdb are not asps.

John wants to know how long an asp could be, given the alphabet’s length. For instance, if asps were made
with only {a, b}, a longest asp could have at most three symbols, e.g., aba. You are asked to help John with his
task.

Input
The input consists of several test cases. A case is defined with a line with a positive integer number N,
1 < N < 1000, the number of symbols in the alphabet used to build asps. The end of the input is signaled with a
line containing a single 0, which should be not processed.

The input must be read from standard input.

Output
For each test case, output a line with one integer value, corresponding to the length of an asp of maximal length
that may be built with an alphabet of N symbols.

The output must be written to standard output.

Sample Input

2
3
0

Sample Output

3
7



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 2

B: Be Strong
Source file name: be.c, be.cpp, be.java, or be.py

Author: Camilo Rocha

A prefix of a string is a substring that occurs at the beginning. If a string has size N ≥ 0, then it has exactly N + 1
prefixes (the empty string is a prefix of any string). Given a collection of strings, its strong prefix is the longest
prefix common to all strings in the collection. Any difference between lowercase and uppercase characters is
considered immaterial.

For example, te is the strong prefix for the collection

tequila tEnnessee Telephone tetris

The empty string is the strong prefix for the collection

hello world

In this problem, you are asked to compute the strong prefix of a collection of words.

Input
The input consists of several test cases. Each test case begins with a line containing a number M (0 ≤ M ≤ 5 000)
denoting the number for words in the collection. Then, M lines follow, each containing a string W (1 ≤ |W | ≤ 200)
made from English lowercase and uppercase characters. The end of the input is given with M = 0, which should
not be processed.

The input must be read from standard input.

Output
For each test case, output a single line with the strong prefix of the collection of M words where the case is
immaterial. The output can only contain English lowercase characters. If the strong prefix is empty, output a star
‘*’.

The output must be written to standard output.

Sample Input

4
tequila
tEnnessee
Telephone
tetris
2
hello
world
2
De
dE
0

Sample Output

te
*
de



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 3

C: Knights
Source file name: knights.c, knights.cpp, knights.java, or knights.py

Author: Rodrigo Cardoso

KA and KB are knights in a generalized chessboard with dimensions n × n, with n ≥ 1. Its rows and columns are
numerated 0, 1, . . . , n − 1: the square (i, j), with 0 ≤ i, j < n, is located at the i-th row and j-th column of the
chessboard.

The two knights KA and KB are positioned in squares of the board, and their goal is to wander from their initial
locations to meet each other. They follow the rules of knights in chess: they can move two squares vertically
and one square horizontally, or two squares horizontally and one square vertically (i.e., forming the shape of a
capital L), always within the chessboard boundaries. The following figure illustrates two examples of knight
moves on a typical 8 × 8 chessboard:

They move alternately, one move each time, and KA moves first. If in KB’s k-movement (with k ≥ 0), KB may
reach the square KA is located at, it is said that they meet in k movements. Note that it could be that, depending
on the initial positions, KA and KB cannot meet. For instance, if on an 8 × 8 chessboard the initial positions of
KA and KB are (0, 0) and (6, 2), respectively, then they can meet in 2 movements with the following sequence of
movements:

(2, 1) (5, 4) (4, 2) (4, 2).

Your task is to write a program that, given the size of the chessboard and the initial positions of KA and KB,
determines the minimum number of movements needed to meet or identifies if this is impossible.

Input
The input consists of several test cases. A case is defined with a line with 5 blank-separated integer values
n, a, b, c, d, 1 < n < 300 and 0 ≤ a, b, c, d < n, where n is the number of rows and columns of the chessboard,
and (a, b) and (c, d) are the initial locations for KA and KB, respectively. The end of the input is given with
n = a = b = c = d = 0, which should not be processed.

The input must be read from standard input.

Output
For each test case, output a single line: the minimum number of moves required for KA and KB to meet whenever
this is possible, and ‘*’ otherwise.

The output must be written to standard output.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 4

Sample Input

8 0 0 5 4
3 0 0 0 1
6 1 2 5 4
0 0 0 0 0

Sample Output

2
*
1



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 5

D: Robot Arm
Source file name: arm.c, arm.cpp, arm.java, or arm.py

Author: Rafael García

Two-Dimensional Reacher (RD2) is a robotic arm (distant ancestor of the famous R2D2) that has been used as a
welder. Its movements are restricted to two dimensions.

RD2 can be described as a chain of N straight and rigid sections made of very hard metal, N > 0, and a joint
between each pair of consecutive sections. The free end of the first section is pinned to a point that acts as a
shoulder and the free end of the last section acts as a fingertip. The joints between sections allow the arm to be
folded at any angle between 0 and 2π (even on itself). The same goes for the shoulder as it also allows the first
section to be moved in any direction.

Assuming that the shoulder of RD2 is pinned at the point (0, 0) and that the N sections have lengths l1, . . . , lN ,
the goal is to decide if each point (x1, y1), · · · , (xm, ym) in the plane can be touched by RD2’s fingertip. For
example, if N = 3 and RD2 has sections with lengths 2, 5, and 2, respectively, then RD2 can touch the points
(4, 5) and (2, 3); however, it cannot touch the points (0, 0) and (9, 1).

Input
The input consists of several test cases. A case begins with a line with two positive integers N and m where N
is the number of sections and m the number of points to be touched (1 ≤ N ≤ 103 and 1 ≤ m ≤ 103). A line
with N integer positive numbers l1, . . . , lN follows, describing the lengths of the sections: l1 is the length of
the first section, l2 the length of the second section, and so on (1 ≤ li ≤ 104). Each of the following m lines
contains two blank-separated integer numbers xi and yi, defining the coordinates of the ith point to be touched
(−107 − 1 ≤ xi, yi ≤ 107 + 1).

The end of the input is denoted with a line that contains two blank-separated zeroes, which should not be
processed.

The input must be read from standard input.

Output
For each case, output m lines, one per point: the i-th line contains ‘Y’ if RD2 can touch the point (xi, yi) and ‘N’
otherwise.

The output must be written to standard output.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 6

Sample Input

3 4
2 5 2
4 5
2 3
0 0
9 -1
1 2
10000
1 800
10000 0
0 0

Sample Output

Y
Y
N
N
N
Y



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 7

E: LISP Extravaganza
Source file name: extravaganza.c, extravaganza.cpp, extravaganza.java, or extravaganza.py

Author: Camilo Rocha

LISP (an acronym for LISt Processing) is a family of programming languages with a long history and a distinctive,
fully parenthesized notation. It is a favored programming language for artificial intelligence (AI) research, and
today some of its general-purpose dialects include Common Lisp, Scheme, and Clojure.

In LISP, all program code is written as parenthesized lists. Although its syntax is simple and consistent, during
the years it has been given nicknames such as Lots of Irritating Superfluous Parentheses and the likes. In this
problem, you will have to deal with strings that are made of parentheses (i.e., ‘(’ and ‘)’), such as in LISP.

A string s of parentheses is balanced if s satisfies one of the following conditions:

• it is the empty string;

• it is the string (t) and t is a balanced string; or

• it is the string tu for some balanced strings t and u.

For instance, the strings () and ((())())()(()) are balanced, while ())() and ((())() are not.

Deciding if a given string is balanced is quite simple for experienced programmers such as yourself. Hence, the
problem to solve here is a little different: given a string s, can you compute the length of a longest balanced
subsequence of s? In the case of (), ((())())()(()), ())(), and ((())() the answers are 2, 14, 4, and 6,
respectively. In the first two cases the sequences are balanced; in the third case ()() and the fourth case (())()
are the longest balanced subsequences.

Input
The input consists of several test cases. The first line of the input contains a number m ≥ 0 indicating the number
of test cases; then m lines follow. Each test case is given in a single line comprising a natural number n and a
string s (1 ≤ n ≤ 50 000), separated by a blank, where n is the length of s and s contains parentheses only.

The input must be read from standard input.

Output
For each test case, in a single line, output the length of a longest balanced subsequence of s.

The output must be written to standard output.

Sample Input

4
2 ()
14 ((())())()(())
5 ())()
7 ((())()

Sample Output

2
14
4
6



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 8

F: Finding Common Passwords
Source file name: find.c, find.cpp, find.java, or find.py

Author: Andrés Mejía

As a Security Engineer, one of your main responsibilities is to ensure that employees in the company use
passwords that are uncommon and hard to guess. Unfortunately, you suspect that your colleagues are not
adhering to this idea: several email accounts, with confidental company information, have been recently
compromised by a hacking group known as the International Common Password Connoisseurs (ICPC).

To protect against future attacks, you started an audit of an anonymized sample of passwords, and have discovered
that people frequently include common words like admin or secret in their passwords. It turns out, for instance,
that qwerty appeared in at least 60% of the passwords! You have decided to systematically look for long strings
appearing often in the list of passwords. Specifically, given a list of N passwords and a positive integer K, you
are looking for the longest string in the N passwords appearing at least in K of them.

For instance, consider the following list of N = 5 passwords:

monkey monk money motorcycle recycle

In the case K = 2, the longest such (sub)string is cycle. In the case K = 3, the longest substring is mon.
However, in the case K = 5, the longest substring is the empty one.

Recall that a substring is defined as a contiguous sequence of characters within a string. For example, monk,
onke, and key are substrings of monkey but money is not. By definition, a string is always a substring of
itself. Note that, in some cases, there may be multiple answers. In this problem, in such cases, the interest is
in the substring lexicographically smallest (i.e., the one appearing first in a dictionary). For example, aac is
lexicographically smaller than aacb, ab, and aad, but aac is not lexicographically smaller than aab.

Given a list of N passwords and an integer K, what is the longest string in the N passwords appearing at least in
K of them?

Input
The input consists of several test cases. Each test case starts with a line with two integers N and K (1 ≤ N ≤
100 000 and 1 ≤ K ≤ N). The next N lines contain the password list, one per line. The passwords are non-empty
and only contain lowercase English letters (a-z). The sum of the lengths of all passwords in the list does not
exceed 100 000. The last line of the input contains two blank-separated zeros and should not be processed.

The input must be read from standard input.

Output
For each test case output a single line with the longest string that is a substring of at least K passwords. If there
are multiple possible options, output the one that is lexicographically smallest. If such a string is the empty one,
output a single asterisk (*).

The output must be written to standard output.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 9

Sample Input

5 1
monkey
monk
money
motorcycle
recycle
5 2
monkey
monk
money
motorcycle
recycle
5 3
monkey
monk
money
motorcycle
recycle
5 4
monkey
monk
money
motorcycle
recycle
5 5
monkey
monk
money
motorcycle
recycle
3 1
security
security
insecure
3 2
security
security
insecure
3 3
security
security
insecure
0 0

Sample Output

motorcycle
cycle
mon
mo
*
insecure
security
secur



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 10

G: Grain Silos
Source file name: grain.c, grain.cpp, grain.java, or grain.py

Author: Julián Badillo

Winter is coming! King Arthur can feel it in his bones and Camelot needs to prepare for it. This is a gigantic
amount of work, including harvesting grass for the cattle, salting and smoking meat, collecting firewood, and the
sort.

One crucial task is to stockpile grain sacks to survive the winter. Camelot, being a prosperous kingdom, harvests
and collects different types of grain: barley, wheat, rye, and many more. They are bagged in sacks, which are
--in turn-- stacked in silos. All silos follow the same simple design: all have the same capacity and grain sacks
are piled on top of each other.

An industrious, but not very grain-virtuoso, Sir Lancelot was bestowed with the noble task of gathering all the
grain in the Kingdom. When King Arthur --his boss-- came to inspect his work, he found that Sir Lancelot
mixed sacks from different types of grain in the same silo. This is a major disaster because it makes accounting,
planning, and distribution rather difficult. There is also the risk of cross-contamination.

Your task is to help Sir Lancelot in sorting the sacks of grain in the silos, so that each silo ends up with one type
of grain and all sacks of the same type are stored in a single silo. You need to find an efficient way to do it (i.e.,
one with the minimum amount of moves). Remember, it is late already and winter is coming, and King Arthur is
not highly pleased with the current situation.

Keep in mind that:

• Silos only have a hatch at the top. You can only take the top sack of grain from one silo and place it at the
top of another silo.

• You can move a sack of grain from one silo to another only if the target silo is empty or contains the same
type of grain at the top. The capacity of a silo cannot be exceed at any point in time.

• You cannot leave any sack of grain in the open at any point in time or you’ll be feeding the crows, which
is considered a bad omen.

Consider the following example, where Sir Lancelot has five silos to account for, each with capacity for 3 sacks.
Each grain sack is represented by a letter corresponding to the type of grain it contains: W for wheat, B for
barley, and R for rye.

B R
B R W
W B W R
---------
1 2 3 4 5

Some valid moves are:

• Moving the top sack of grain (R) from silo 2 to silo 4.

• Moving the top sack of grain (W) from silo 3 to silo 5.

Some invalid moves would be:

• Moving the top sack of grain (R) from silo 2 to silo 3, since silo 3 contains a different type of grain at the
top.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 11

• Moving any sack to silo 1, since it is at full capacity.

The following sequence of moves sorts the grain as King Arthur requires:

B R
B R W
W B W R
---------
1 2 3 4 5

B
B R W R
W B W R
---------
1 2 3 4 5

B R
B W R
W B W R
---------
1 2 3 4 5

R
B B W R
W B W R
---------
1 2 3 4 5

B R
B W R

W B W R
---------
1 2 3 4 5

B W R
B W R
B W R

---------
1 2 3 4 5

Although there may be different ways to sort this mess, 5 moves is the best available option.

Input
The input consists of several test cases. Each case begins with a line containing two blank-separated integers N
and C, 1 ≤ N,C ≤ 15, indicating the number of silos and the capacity of each silo, respectively. Then, C lines
follow, each with exactly N characters. They define the initial configuration of the N silos, where each silo
configuration is given by the corresponding column (from top to bottom, similar to the descriptions used in the
problem statement). A letter represents a sack of grain and a period ‘.’ an empty slot in a silo. There are not
empty slots beneath a sack grain. You can assume that there are at most N different types of grain (i.e., each
type of grain may have its own silo) and at most C number of sacks of the same type of grain (i.e., all sacks of
the same grain will fit in a single silo).

The last line contains two blank-separated zeros, which should not be processed.

The input must be read from standard input.

Output
For each test case, output a single line with the minimum number of moves required to sort the grain according
to the given rules and King Arthur’s standards. If it is not possible, output ‘Camelot Will Starve!’.

The output must be written to standard output.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 12

Sample Input

5 3
BR...
BRW..
WBWR.
3 2
BB.
RR.
3 4
...
BBB
RRR
WWW
0 0

Sample Output

5
3
Camelot Will Starve!



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 13

H: Match Points
Source file name: matchp.c, matchp.cpp, matchp.java, or matchp.py

Author: Rodrigo Cardoso

International Connecting Points Co. (ICPC) is a technological enterprise that produces printed electronic circuit
cards. A card consists of a square grid where connecting points of two kinds, O and X, are located. A card is said
to be well done if every O-point is connected, by means of a straight segment, with exactly one X-point, and vice
versa. Of course, since we are talking about printed circuits, there cannot be any crossing among connections in
a well done card. A match is a list describing how points are connected on a card. For m a natural number, an
m-card may be considered as a grid where 2m points are located. As you may suppose, there are m O-points and
m X-points defined on the card.

The next figure depicts a match problem for a 3-card: the one on the left establishes the set of O- and X-points to
connect; the one at the center defines a match, but not a well done one; and the one on the right does indeed
define a well done match.

Another interesting feature of a well done match is its length, defined as the sum of the lengths of the segments
defined in the match. It should be clear that ICPC prefers well done matches that use as few connection material
as possible. An optimal match is a well done match of minimal length.

ICPC researchers have demonstrated a curious fact: if no three of the given 2m points on a card are collinear,
there is always at least one match that corresponds to a well done card. The problem is that, for the moment,
nobody knows how to mechanically find such a match. Anyway, knowing of the existence of these non-crossing
matches, ICPC is now interested in calculating the length of an optimal match. In the above example, it is easy
to see that the given solution (the one on the right) corresponds to an optimal match.

Your task is to help ICPC to find the length of an optimal match, given the O- and X-points of an m-card (no
three of which are collinear).

Input
The input consists of several test cases, each defining an m-card. A case begins with a line containing an integer
m, the number of O- and X-points, 0 < m ≤ 200. Then, two lines follow, each one with 2m integer values

x1 y1 x2 y2 · · · xm ym

u1 v1 u2 v2 · · · um vm

where ⟨xi, yi⟩ and ⟨ui, vi⟩ are the coordinates of the i-th O-point and the i-th X-point, respectively. You may
assume that no three of these 2m points are collinear, 0 ≤ xi, yi, ui, vi ≤ 1 000, and 1 ≤ i ≤ m. The end of the
input is indicated by a line containing a single zero, which should be not processed.

The input must be read from standard input.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 14

Output
For each test case, output a line consisting of a real number rounded to 3 decimal places: the length of an optimal
match for the given m-card.

The output must be written to standard output.

Sample Input

2
0 0 1 0
1 1 0 1
3
1 0 0 2 2 3
0 1 1 1 3 2
0

Sample Output

2.000
3.414



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 15

I: Stack Solitaire
Source file name: stack.c, stack.cpp, stack.java, or stack.py

Author: Rafael García

The International Casino for Programming Contestants (ICPC) has introduced a new game: the Stack Solitaire.
At the start of the game, the player is given a stack of N coins, each having a, possibly different, positive integer
value. As the game goes on, the number of stacks will increase.

At each turn, the player selects one stack from those having at least two coins and divides it into two smaller
stacks, keeping the original order of the coins. The payoff obtained in each play is equal to the sum of the values
of the coins in the split stack. The player’s final payoff is obtained by adding up the payoffs from each play. The
game ends when the player cannot split any stack, i.e., there are N stacks of one coin each.

For example, for the initial stack


5
10
2
7

, there exist five possible sequences of plays. Two of them are


5
10
2
7

 −→
[
5
] 10

2
7

 −→ [5]
[
10
2

] [
7
]
−→
[
5
] [

10
] [

2
] [

7
]

with a total payoff of (5 + 10 + 2 + 7) + (10 + 2 + 7) + (10 + 2) = 55; and,
5
10
2
7

 −→
[

5
10

] [
2
7

]
−→
[
5
] [

10
] [2

7

]
−→
[
5
] [

10
] [

2
] [

7
]

with a total payoff of (5 + 10 + 2 + 7) + (5 + 10) + (2 + 7) = 48.

Given an initial stack, what is the minimum possible final score?

Input
The input consists of several test cases, each defined by two lines. The first line contains an integer N
(2 ≤ N ≤ 1 000), the number of coins in the initial stack. The second line contains N positive integers
representing the values of the N coins in the stack, from bottom to top. Each coin value v is such that
1 ≤ v ≤ 100.

The end of the input is indicated by a line with a single zero.

The input must be read from standard input.

Output
For each test case, output a line with the minimum possible final payoff for the given initial stack.

The output must be written to standard output.



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 16

Sample Input

4
7 2 10 5
3
2 10 7
0

Sample Output

48
31



2023 ACIS REDIS - XXXVII Colombian Programming Contest - ICPC 17

J: TNumbers
Source file name: tnumbers.c, tnumbers.cpp, tnumbers.java, or tnumbers.py

Author: Rodrigo Cardoso

Note that

1 + 2 = 3,

but

1 , 2 + 3 + 4

1 + 2 , 3 + 4

1 + 2 + 3 , 4.

A TNumber n is a positive integer for which there exist a number k, 1 ≤ k < n, such that the sum of the first k
numbers equals the sum of the numbers from k + 1 to n. It is clear that 3 is a TNumber, but 4 is not.

Given two non-negative integers a and b, with a ≤ b, determine how many numbers n satisfying a ≤ n ≤ b are
TNumbers.

Input
The problem input consists of several cases. A case is described with a line with two integer numbers a and b,
1 ≤ a ≤ b ≤ 108. The end of the input is signaled by a line with two zero values ‘0 0’, which should not be
processed.

The input must be read from standard input.

Output
For each case, output a line with exactly one integer value indicating how many TNumbers are there.

The output must be written to standard output.

Sample Input

1 5
3 3
4 8
0 0

Sample Output

1
1
0


	A: ASP
	B: Be Strong
	C: Knights
	D: Robot Arm
	E: LISP Extravaganza
	F: Finding Common Passwords
	G: Grain Silos
	H: Match Points
	I: Stack Solitaire
	J: TNumbers

