H: Match Points

Source file name: matchp.c, matchp.cpp, matchp. java, or matchp.py
Author: Rodrigo Cardoso

International Connecting Points Co. (ICPC) is a technological enterprise that produces printed electronic circuit cards. A card consists of a square grid where connecting points of two kinds, O and X , are located. A card is said to be well done if every O-point is connected, by means of a straight segment, with exactly one X-point, and vice versa. Of course, since we are talking about printed circuits, there cannot be any crossing among connections in a well done card. A match is a list describing how points are connected on a card. For m a natural number, an m-card may be considered as a grid where $2 m$ points are located. As you may suppose, there are m O-points and m X-points defined on the card.

The next figure depicts a match problem for a 3-card: the one on the left establishes the set of O- and X-points to connect; the one at the center defines a match, but not a well done one; and the one on the right does indeed define a well done match.

Another interesting feature of a well done match is its length, defined as the sum of the lengths of the segments defined in the match. It should be clear that ICPC prefers well done matches that use as few connection material as possible. An optimal match is a well done match of minimal length.

ICPC researchers have demonstrated a curious fact: if no three of the given $2 m$ points on a card are collinear, there is always at least one match that corresponds to a well done card. The problem is that, for the moment, nobody knows how to mechanically find such a match. Anyway, knowing of the existence of these non-crossing matches, ICPC is now interested in calculating the length of an optimal match. In the above example, it is easy to see that the given solution (the one on the right) corresponds to an optimal match.

Your task is to help ICPC to find the length of an optimal match, given the O - and X -points of an m-card (no three of which are collinear).

Input

The input consists of several test cases, each defining an m-card. A case begins with a line containing an integer m, the number of O- and X-points, $0<m \leq 200$. Then, two lines follow, each one with $2 m$ integer values

$$
\begin{array}{lllllll}
x_{1} & y_{1} & x_{2} & y_{2} & \cdots & x_{m} & y_{m} \\
u_{1} & v_{1} & u_{2} & v_{2} & \cdots & u_{m} & v_{m}
\end{array}
$$

where $\left\langle x_{i}, y_{i}\right\rangle$ and $\left\langle u_{i}, v_{i}\right\rangle$ are the coordinates of the i-th O-point and the i-th X-point, respectively. You may assume that no three of these $2 m$ points are collinear, $0 \leq x_{i}, y_{i}, u_{i}, v_{i} \leq 1000$, and $1 \leq i \leq m$. The end of the input is indicated by a line containing a single zero, which should be not processed.

The input must be read from standard input.

Output

For each test case, output a line consisting of a real number rounded to 3 decimal places: the length of an optimal match for the given m-card.

The output must be written to standard output.

Sample Input	Sample Output				
2					2.000
0	0	1	0		3.414
1	1	0	1		
3					
1	0	0	2	2	3
0	1	1	1	3	2
0					

