C: Knights

Source file name: knights.c, knights.cpp, knights.java, or knights.py
Author: Rodrigo Cardoso
$K A$ and $K B$ are knights in a generalized chessboard with dimensions $n \times n$, with $n \geq 1$. Its rows and columns are numerated $0,1, \ldots, n-1$: the square (i, j), with $0 \leq i, j<n$, is located at the i-th row and j-th column of the chessboard.

The two knights $K A$ and $K B$ are positioned in squares of the board, and their goal is to wander from their initial locations to meet each other. They follow the rules of knights in chess: they can move two squares vertically and one square horizontally, or two squares horizontally and one square vertically (i.e., forming the shape of a capital L), always within the chessboard boundaries. The following figure illustrates two examples of knight moves on a typical 8×8 chessboard:

They move alternately, one move each time, and $K A$ moves first. If in $K B$'s k-movement (with $k \geq 0$), $K B$ may reach the square $K A$ is located at, it is said that they meet in k movements. Note that it could be that, depending on the initial positions, $K A$ and $K B$ cannot meet. For instance, if on an 8×8 chessboard the initial positions of $K A$ and $K B$ are $(0,0)$ and $(6,2)$, respectively, then they can meet in 2 movements with the following sequence of movements:

$$
(2,1) \quad(5,4) \quad(4,2) \quad(4,2)
$$

Your task is to write a program that, given the size of the chessboard and the initial positions of $K A$ and $K B$, determines the minimum number of movements needed to meet or identifies if this is impossible.

Input

The input consists of several test cases. A case is defined with a line with 5 blank-separated integer values $n, a, b, c, d, 1<n<300$ and $0 \leq a, b, c, d<n$, where n is the number of rows and columns of the chessboard, and (a, b) and (c, d) are the initial locations for $K A$ and $K B$, respectively. The end of the input is given with $n=a=b=c=d=0$, which should not be processed.

The input must be read from standard input.

Output

For each test case, output a single line: the minimum number of moves required for $K A$ and $K B$ to meet whenever this is possible, and '*' otherwise.

The output must be written to standard output.

Sample Input	Sample Output			
8	0	0	5	4
3	0	0	0	1
6	1	2	5	4
0	0	0	0	0

