Problem A: Alice's Travels II
 Time Limit: 5 seconds

Description

Alice is a merchant in the world. Layout of this world is a tree on N nodes (i.e., there is only one simple path between any two cities). Each city has an infinite number of gems, each with cost T_{i} dollars and brightness S_{i}. Suppose Alice traveled from city U to city V on the shortest path and started with K dollars, then the maximum total brightness (from gems purchased on her route, without exceeding K dollars) she can achieve is a some function; let's call it $f(K)$. Compute the following 2 quantities:
$g(K)=\sum_{i=1}^{K} f(i)$ and $h(K)=f(1) \wedge f(2) \ldots \wedge f(K)$ where \wedge means XOR.

Input

A number of inputs ($\mathbf{\leq 2 0}$) described as follows. Input start with N, the number of cities ($0<N \leq 40000$) and $K(0<K \leq 61)$, the maximum dollars. This is followed by $N-1$ line consecutively, with two numbers x and y between 1 and N on each line, specifying there is a road between cities x and y. Next is a line with N numbers, which is the cost of the gems $T_{i}\left(0<T_{i} \leq K\right)$. This is followed by a line with N integers, the brightness of the gems $S_{i}\left(0<S_{i} \leq 10^{6}\right)$, The next line is an integer Q, the number of inquiries ($0<Q \leq 40000$). Then Q lines, each line input three positive integer U, V, which means Alice travels from city U to city V. Note that $1 \leq x, y, U, V \leq N$.

Output

Output for each query, $g(K)$ and $h(K)$, separated by a space.

Sample Input

510
12
23
24
15
12345
1015304550
2
11
54

Sample Output

55014
60064

