
XXXI Maraton Nacional de Programacion
Colombia - ACIS / REDIS 2017

ACM ICPC

Problems
(This set contains 11 problems; problem pages numbered from 1 to 20)

General Information
Unless otherwise stated, the following conditions hold for all problems.

Program name

1. Your source file (your solution!) must be called <codename>.c, <codename>.cpp, <codename>.java
or <codename>.py, as indicated below the problem title.

Input

1. The input must be read from standard input.
2. The input contains several test cases. Each test case is described using a number of lines that depends on

the problem.
3. When a line of data contains several values, they are separated by single spaces. No other spaces appear

in the input. There are no empty lines.
4. Every line, including the last one, has the usual end-of-line mark.
5. The end of input is indicated by the end of the input stream. There is no extra data after the test cases in

the input.

Output

1. The output must be written to standard output.
2. The result of each test case must appear in the output using a number of lines that depends on the problem.
3. When a line of results contains several values, they must be separated by single spaces. No other spaces

should appear in the output. There should be no empty lines.
4. Every line, including the last one, must have the usual end-of-line mark.
5. After the output of all test cases, no extra data must be written to the output.
6. To output real numbers, round them to the closest rational with the required number of digits after the

decimal point. Ties are resolved rounding to the nearest upper value.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 1

A: A Contest to Meet
Source file name: acm.c, acm.cpp, acm.java, or acm.py

Author: Rodrigo Cardoso

A Contest to Meet (ACM) is a reality TV contest that sets three contestants at three random city intersections.
In order to win, the three contestants need all to meet at any intersection of the city as fast as possible. The
contestants are given communication devices to help them in sharing information about the city (e.g., where the
sun is, how far the mountains are, etc.).

It should be clear that the contestants may arrive at the intersections at different times, in which case, the first
to arrive can wait until the others arrive. Moreover, it is guaranteed that there is a path between any pair of
intersections.

From an estimated walking speed for each one of the three contestants, ACM wants to determine the minimum
time that a live TV broadcast should last to cover their journey regardless of the contestants’ initial positions and
the intersection they finally meet. You are hired to help ACM answer this question.

You may assume the following:

• Each contestant walks at a given estimated speed.

• The city is a collection of intersections in which some pairs are connected by bidirectional streets that the
contestants can use to traverse the city.

Input

The input consists of several test cases.

The first line of each test case contains two blank-separated integer values N and S , indicating the number
of intersections and the number of streets in the city, respectively (1 ≤ N ≤ 100, 0 ≤ S ≤ 9000). Then
follow S lines, each one with three blank-separated integer values i, j, and d (0 ≤ i < N, 0 ≤ j < N, i , j,
1 ≤ d ≤ 200), meaning that there is a street of length d meters connecting the i-th and the j-th intersections. Note
that intersections are indexed from 0 to N − 1. You can assume that there is at most one street connecting any
pair of intersections and that the input lists a street exactly once.

At the end of each test case there is one line with three blank-separated integer values sA, sB, sC (50 ≤
sA, sB, sC ≤ 100), representing the walking speed of each of the three contestants, in meters per minute.

The input must be read from standard input.

Output

For each test case, print a single line with an integer indicating the minimum number of minutes that will pass
before the three contestants can meet, if they start to walk immediately after the show starts. Remember that the
contestants can start at any random (unknown) intersection and can decide to meet at any intersection: you need
to account for the worst case scenario.

The answer should be given rounding decimals to the next integer (e.g., 2.9 minutes rounds up to 3 minutes and
3.2 minutes rounds up to 4 minutes).

The output must be written to standard output.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 2

Sample Input

2 1
0 1 150
60 50 75
3 2
1 0 100
1 2 80
60 80 50
4 5
0 1 200
0 2 200
0 3 200
2 1 200
2 3 200
50 100 100

Sample Output

3
4
8

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 3

B: Balance Game
Source file name: balance.c, balance.cpp, balance.java, or balance.py

Author: Rodrigo Cardoso

Consider a puzzle with three types of tokens. Tokens of the same type have the same weight and any two tokens
of different type have different weight. There are M copies of each token type. There is a two-plate scale where
tokens can be placed. There is also a given object with known weight W that can be put on the plates of the
scale. The goal of the puzzle is to balance the scale with some of the tokens to check the weight of the object. If
used, tokens of the same type must be allocated on the same plate.

For example, suppose that there are three token types with weights 20, 50, and 40 grams, respectively. Also,
there are M = 3 copies of each token type. If the given object weights W = 140 grams, then its weight can be
checked in five different ways (neglecting the order of the plates):

Five different ways to achieve the goal

However, it is impossible to measure the weight W = 105 with this set of tokens.

Your job is to write a computer program to determine the number of different ways to check the weight of the
object.

Input

The input consists of several test cases. The first line of each test case contains two blank-separated integers M
and W (1 ≤ M ≤ 5 000 and 1 ≤ W ≤ 5 000 000) indicating, respectively, the number of copies of each token
type and the weight of the object to be checked. Then there is a line containing three distinct blank-separated
integers n1, n2, and n3 representing the weigths of each token type (1 ≤ ni ≤ 1 000, for each 1 ≤ i ≤ 3, n1 , n2,
n1 , n3, n2 , n3).

The input must be read from standard input.

Output

For each test case, print a single line indicating the number of different ways the given weight can be checked
with the set of tokens.

The output must be written to standard output.

Sample Input

3 140
20 50 40
3 105
20 50 40

Sample Output

5
0

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 4

C: Compact Terms
Source file name: compact.c, compact.cpp, compact.java, or compact.py

Author: Camilo Rocha

A term is a tree-like structure used in mathematics, computer science, and philosophy to identify entities in a
domain of discourse. What is remarkable about terms is that they offer a direct encoding of such entities that a
computer can process.

For a particular domain of discourse, the set of terms is parametric on a set of variablesV and a set of function
symbols F ; it is inductively defined by the following rules:

• Any variable is a term.

• Any function symbol f with ar(f) = 0 is a term.

• Any expression f (t1, . . . , tn), with ar(f) = n ≥ 1 and each argument ti a term (1 ≤ i ≤ n), is a term.

Here ar is a function from the set of function symbols F to the natural numbers. For each f ∈ F , the expression
ar(f) denotes the number of arguments of f . For example, for F = {a, f , g, h} with ar(a) = 0, ar(g) = ar(h) = 2,
ar(f) = 3, and X a variable, let t be the term f (g(h(a, a), h(a, a)), h(a, X), g(h(a, a), h(a, a))). The term t can be
graphically represented as a labeled tree with 18 vertices as follows:

f

g

h

aa

h

aa

h

Xa

g

h

aa

h

aa

A string representation of a term, in general, can be unnecessarily lengthy and thus inefficient to compute with.
An important observation to cope with this limitation is that subterms can be shared and then a tree can be
represented by a directed acyclic multigraph (or dam). In a dam, vertices are labeled with function symbols
from F and variables fromV, and edges are labeled with the argument position of the corresponding subterm in
the term structure. Note that there can be more than one edge between any pair of vertices of a dam.

The following dams are representations of the term t abovementioned. In these representations, for example, the
topmost function symbol f is applied over three terms of which the first and third are shared: this is indicated by
labels 1 and 3 in the edges with source f .

f

g h

h a X

a

1

3

2

1 2 1 2

2

1

f

g h

h a X

1

3

2

1 2 1 2

1

2

Although these dams represent the same term, they differ in the number of vertices: the one on the left has 7
vertices and the one on the right has 6 vertices. There can be many other dams representing the term t, but any of
them requires at least 6 vertices.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 5

In this problem, the interest is in computing the size (with respect to the number of vertices) of a dam representing
a term which shares the most number of subterms. More precisely, the goal is to compute the minimum number
of vertices required to represent a term as a dam.

Input

The input consists of several test cases, each being a line containing a string representation of a term s
(1 ≤ |s| ≤ 105). A variable inV is represented in s by a string v (1 ≤ |v| ≤ 20) made of lowercase and uppercase
letters of the English alphabet starting with an uppercase letter. Similarly, a function symbol in F is represented
in s by a string f (1 ≤ | f | ≤ 20) made of lowercase and uppercase letters of the English alphabet starting with a
lowercase letter. You can assume that s contains at most 2 000 variables and function symbols (not necessarily
different).

The input must be read from standard input.

Output

For each test case output the minimum number of vertices required to represent s as a dam.

The output must be written to standard output.

Sample Input

f(g(h(a,a),h(a,a)),h(a,X),g(h(a,a),h(a,a)))
h(a,b)
h(a,a)
h(A,a)
CCPL
f(a,a)
f(g(a,X,a),g(a,a,X))
f(g(a,X,a),g(a,X,a))

Sample Output

6
3
2
3
1
2
5
4

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 6

D: Rotating Drum
Source file name: drum.c, drum.cpp, drum.java, or drum.py

Author: Rafael García

A rock ’n’ roll band has k musicians, any of them can play any of n instruments, and they can be located in any
order on the stage. This band has decided to make a drawing on the bass drum in order to characterize the way
they perform on stage. The idea is to divide the surface of the bass drum into m equal sections (like a large pizza)
and then assign one of k colors to each of the sections in a way that any possible sequence on n colors is found
exactly once clockwise on the drum.

Nick De Bruijn -- a musician in the band -- is a mathematician and he knows that every possible sequence of n
colors must be present on the bass drum. He knows that for k ≥ 2 the value of m must be equal to kn and for
k = 1 the value of m must be equal to n.

As an example, consider the following bass drum drawing satisfying the abovementioned constraints for k = 2
and n = 3:

A

AB

B

B

A B

A

In this case, each one of the 8 sequences appears exactly once clockwise in the drawing. Namely, the sequences
AAA, AAB, ABA, BAB, ABB, BBB, BBA, BAA.

Your task is to help the band to find the sequence of colors that should be drawn on the bass drum for given k
and n.

Input

The input consists of several test cases. Each test case is described by a line containing two blank-separated
integers k and n: the number of colors (1 ≤ k ≤ 26) and the length of the subsequences (1 ≤ n ≤ 10). You may
assume that 1 ≤ m ≤ 105.

The input must be read from standard input.

Output

For each test case print a single line with the solution sequence. The k colors shall be represented by the first k
uppercase letters of the English alphabet. If there is more than one solution, you must print the first sequence in
lexicographical order.

The output must be written to standard output.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 7

Sample Input

4 2
2 3
1 5

Sample Output

AABACADBBCBDCCDD
AAABABBB
AAAAA

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 8

E: Rational Coins
Source file name: coins.c, coins.cpp, coins.java, or coins.py

Author: Rafael García

Ratioland is a beautiful and highly rational country where the official currency is the Ration and the currency
symbol is R. Coins are available in denominations of 1

q R, for each natural number q = 1, 2, 3, 4, Some years
ago, the Royal Bank of Ratioland promoted a law to define the properties of all coins: each coin of denomination
1
q R had to be a cylinder made of gold with a thickness of 0.1 inches, radius of 1

2·q2 inches, and labeled with the

fraction representing the magnificent Rational Number 1
q .

1
1R

1
2R

1
3R

1
4R

Coins of denomination 1
q R, for values of q = 1, 2, 3, 4.

In order to celebrate the beauty of its currency, the Royal Bank of Ratioland wants to display some coins in its
museum. For this purpose, it has designed a frame with a width of 2 inches, a height of 1 inch, and a thickness of
0.1 inches. In this frame, two coins of denomination 1

1 R fit exactly. Moreover, many other coins can be placed
in the frame. Raphaello, a renowned and rational artist born in Ratioland, was invited by the bank manager
to design the layout to place the coins in the frame. After a week of hard work, Raphaello invented a rational
procedure to place the coins inside the frame without any overlapping:

• Embed the frame in a Cartesian coordinate system, locating its corners at
(
− 1

2 , 0
)
,
(

3
2 , 0
)
,
(

3
2 , 1
)
,
(
−1

2 , 1
)
.

• Since it is possible to place only two coins of denomination 1
1 R, these coins are to be placed with their

centers at
(
0, 1

2

)
and
(
1, 1

2

)
, respectively.

• For each natural number q > 1, and each natural value p such that 0 < p
q < 1 and p

q is an irreducible

fraction, a coin of denomination 1
q R is to be placed with center at

(
p
q ,

1
2·q2

)
.

All coins are placed tangent to the horizontal axis of the Cartesian coordinate system. In order avoid confusion,

Raphaello decided to name the coin of denomination 1
q R with center at

(
p
q ,

1
2·q2

)
as M(p/q). For example:

• M(0/1) is the coin of denomination 1
1 R with center at

(
0, 1

2

)
;

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 9

• M(1/1) is the coin of denomination 1
1 R with center at

(
1, 1

2

)
; and

• M(1/2) is the coin of denomination 1
2 R with center at

(
1
2 ,

1
8

)
.

Raphaello wants to know the first n coins that touch the coin M(p/q) inside the frame when sorting all these
coins by decreasing order of radius (i.e., by increasing order of q). If two coins share the same radius, he wants
them sorted by increasing order of x coordinates (i.e., by increasing order of p).

Input

The input consists of several test cases. Each test case is described by a line containing three blank-separated
integers p, q, and n (0 ≤ p

q ≤ 1, 1 ≤ q ≤ 106, 1 ≤ n ≤ 103), with p
q an irreducible fraction.

The input must be read from standard input.

Output

For each test case, print a single line with the n blank-separated names of the first n coins that touch M(p/q) in
the frame. The list of coins must be printed in the order previously described.

The output must be written to standard output.

Sample Input

2 5 4
2 3 3
0 1 2
1 1 2
1 2 5

Sample Output

M(1/2) M(1/3) M(3/7) M(3/8)
M(1/1) M(1/2) M(3/4)
M(1/1) M(1/2)
M(0/1) M(1/2)
M(0/1) M(1/1) M(1/3) M(2/3) M(2/5)

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 10

F: Fish
Source file name: fish.c, fish.cpp, fish.java, or fish.py

Author: Camilo Corena

Advanced Circular Aquariums (ACM) is a state-of-the-art manufacturer of aquariums that can detect when two
types of fish can be separated into two different zones for feeding. This solves the problem of having fish with
different dietary needs in the same aquarium.

The technology offered by ACM is based on a powerful real-time computer vision system placed on top of the
aquariums. For each fish in the aquarium, the computer vision system determines the (x, y) coordinate and type t,
which is either A or B. The goal of the entire system is to detect when the two types of fish can be completely
separated by a flat glass panel running from the edges of the aquarium and from surface to bottom (without
touching any fish).

The figures below depict two scenarios output by the computer vision system. In the one on the left, the two
types of fish can be separated by a single flat glass panel. However, in the scenario on the right, the two types of
fish cannot be completely separated by a single flat glass panel.

Fish types can be separated Fish types cannot be separated

You have been hired to process the output of the computer vision system. Your task is to write a computer
program to determine, for a given state of the aquarium, whether the two types of fish can be separated with a
single flat glass panel.

Input

The input consists of several test cases. Each test case starts with a line containing two blank-separated integers
n and r, where n is the total number of fish (2 ≤ n ≤ 500) and r is the radius of the aquarium (0 < r ≤ 104).
Then n lines follow, each one containing three blank-separated values xi, yi, and ti, where (xi, yi) are the integer
coordinates (xi

2 + yi
2 ≤ r) and ti is the type (A or B) of the i-th fish. A line with two zeros ‘‘0 0’’ indicates the

end of the input.

You may suppose that: the aquarium’s center is located at (0, 0), no two fish share the same coordinates, the size
and form of the fish are negligible, and there is at least one fish of each type.

The input must be read from standard input.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 11

Output

For each test case, print a single line with the text ‘FEED’ if the fish can be separated with a single glass panel
without touching any fish or the text ‘NOT YET’ if this is not possible.

The output must be written to standard output.

Sample Input

10 3
0 0 A
-2 0 A
-1 -1 A
-1 -2 A
1 -2 A
1 1 B
0 1 B
1 0 B
2 0 B
2 -1 B
9 3
0 0 A
-1 -1 A
-2 -1 A
2 -1 A
1 1 A
-1 1 B
1 -1 B
0 2 B
0 -2 B
0 0

Sample Output

FEED
NOT YET

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 12

G: FujikoMine
Source file name: fujiko.c, fujiko.cpp, fujiko.java, or fujiko.py

Author: Camilo Rocha

Lupin is back in business. Well, being the world’s greatest thief, he is back in the business of making ‘easy’
money. He is grateful because last year, thanks to you and your folks in the Colombian programming contest,
the bank robbery went smooth as silk. Money has ran out and this year he is planning a massive cryptocurrency
heist using a tailored-designed ransomware known as FujikoMine. His right-hand man and closest ally Daisuke
Jigen has identified the amount and distribution of cryptocurrency in the web.

The web setup is a tree with two different types of nodes: (re-)transmission and bridge nodes. A link between
two nodes u and v is annotated with the (potential) number of cryptocurrency that can be stolen if both nodes u
and v are infected with FujikoMine. There are some important observations about the ransomware:

• It can infect both transmission and bridge nodes, and attacks as many nodes as possible. However, since
transmission nodes -- unlike bridge nodes -- are usually under heavy scrutiny by sysadmins, the plan is to
limit the amount of transmission nodes to infect while maximizing the potential of the attack.

• Attacks are only effective on paths starting and ending with infected transmission nodes, where all
intermediate nodes in the path are also infected.

• If u and v are infected transmission nodes and there is a path from u to v, then the number of cryptocurrency
that can be stolen by an attack from u to v is the sum of cryptocurrency that can be stolen in the path from
u to v, if in the path all nodes are infected with FujikoMine (otherwise, the sum is 0).

• The paths induced by the infected transmission nodes must form a subtree of the web setup.

• Jigen-san has assured Lupin that each node in the web setup has at most three children.

As an example, consider the depicted web setup with 9 transmission nodes (labeled from a to i) and 7 bridge
nodes (whose labels have been omitted).

a

b

c

d e f g h

i

20 30

40

20

100 25 5

30

10

15

40 25

5

5 10

• If the plan is to infect two transmission nodes and any number of bridge nodes, the best option is to infect a
and g because 30+25+25 = 80 cryptocurrency can be stolen. Infecting a, d or g, h yields 0 cryptocurrency.
In the first case, the path from a to d includes the uninfected transmission node b (otherwise, there would
be three transmission nodes infected). In the second case, there is no path from g to h or from h to g.

• If the plan is to infect three nodes, the greatest potential is 100 and it can be achieved by infecting, e.g.,
a, b, g. Infecting nodes a, b, d, nodes b, c, d, or nodes a, g, h, only has potential 90.

Given a distribution of cryptocurrency in the web and the number of transmission nodes to infect, your task is to
aid Lupin in using FujikoMine by computing the maximum number of cryptocurrency that can be stolen.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 13

Input

The input consists of several test cases. In the first line of a test case there are three blank-separated integers
n,m, q (2 ≤ n ≤ 500, 1 ≤ m ≤ n, and 1 ≤ q ≤ 100), where n is the number of nodes of the web setup, m is the
number of transmission nodes, and q is the number of queries. The nodes of the web setup are identified with
numbers from 0 to n− 1. Each of the next n− 1 lines contains three blank-separated integers u, v,w (0 ≤ u, v < n
and 0 ≤ w ≤ 500) indicating that u is a parent of v and that there are w cryptocurrency that can be stolen by
attacking u and v. Next comes a line with a sequence of m blank-separated pairwise-distinct node labels ti
(0 ≤ ti < n for each 1 ≤ i ≤ m) identifying the transmission nodes in the web setup. Finally, comes a line with a
sequence of q blank-separated integers x j (0 ≤ x j ≤ n for each 1 ≤ j ≤ q) indicating the number of transmission
nodes to infect with FujikoMine.

You can assume that the given setup corresponds to a valid web setup, i.e., that the given graph is a tree with
each node having at most three children.

The input must be read from standard input.

Output

For each web setup and each query x j, print a single line with the maximum number of cryptocurrency that can
be stolen by infecting exactly x j transmission nodes and any amount of bridge nodes.

The output must be written to standard output.

Sample Input

16 9 5
0 1 20
0 9 30
1 10 40
1 2 20
1 11 100
9 12 25
9 13 5
10 3 30
10 4 10
2 5 15
11 14 40
12 6 25
13 7 5
7 8 5
7 15 10
0 1 2 3 4 5 6 7 8
1 2 3 4 16
2 1 1
1 0 2
1
1

Sample Output

0
80
100
170
0
0

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 14

H: Hip-n
Source file name: hipn.c, hipn.cpp, hipn.java, or hipn.py

Author: Rodrigo Cardoso

Hip-n is a game in which two players take turns by placing tokens on the free cells of a non-empty n × n
checkerboard. The game is lost by the first player placing four tokens identifying the vertices of a square: they
can be of any size and tipped at any angle. The game ends in a tie when the board is full of tokens and no player
has lost.

The following figure depicts a 6 × 6 checkerboard and three examples of squares: the first player putting four
tokens on the vertices of any of these squares loses the game. Of course, there are many more options for losing
a game in the 6 × 6 checkerboard.

0 1 2 3 4 5

0

1

2

3

4

5

Your task is to create a program that decides the outcome of a Hip-n game described as a sequence of plays, by
identifying the player that loses or recognizing a tie.

Input

The input consists of several test cases. It ends when there are no more cases to test.

The first line of each test case contains an integer n (1 ≤ n ≤ 200) indicating the number of rows and columns of
the checkerboard. The next line contains n2 distinct pairs of blank-separated integers r and c in the checkerboard
(0 ≤ r < n and 0 ≤ c < n): each such a pair identifies the placement of a token at row r and column c by the
corresponding player. You can assume that player 1 makes the first move, player 2 the second one, player 1 the
third one, and so on.

The input must be read from standard input.

Output

For each test case, print a single line with 0 if the game ends in a tie, 1 if player 1 loses, and 2 if player 2
loses.

The output must be written to standard output.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 15

Sample Input

3
1 0 1 1 2 1 0 2 0 1 2 0 0 0 1 2 2 2
3
1 0 1 1 2 1 0 2 0 1 2 0 1 2 0 0 2 2
3
1 0 2 2 2 1 0 0 1 2 0 2 1 1 2 0 0 1

Sample Output

0
1
2

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 16

I: License Plates
Source file name: plates.c, plates.cpp, plates.java, or plates.py

Author: Edwin Niño

On their daily drive to high school, Antonia and her mom Maria, used to challenge each other using the license
plates of other cars. In their country, license plates always contain a string of exactly three letters. The challenge
was to tell the longest word that contains as a subsequence the string of letters found in a license plate. For
example, if a license plate contained the string OMI, then PROGRAMMING and COLOMBIA could be used as answers
to the challenge. However, the former word was preferred because it was longer.

Those were the old days. Antonia is now a Computer Science student and Maria wants to make some changes to
keep the challenge interesting to her daughter. In the new version of the challenge, Maria writes down a word S
and Antonia must calculate the number of different three-letter strings that are each a subsequence of S .

You must write a program to help Maria calculate in advance the output of the new version of the challenge.

Input

The first line of input contains T (T ≥ 0) indicating the number of test cases. Each test case consists of one
single line containing a string S (1 ≤ |S | ≤ 105). You may assume that S is made only of uppercase letters from
the English alphabet (i.e., A, B, ..., Z) and that there is no blank line between test cases.

The input must be read from standard input.

Output

For each test case, print a single line containing the number of different three-letter strings that are each a
subsequence of S .

The output must be written to standard output.

Sample Input

5
PROGRAMMING
COLOMBIA
NUEVE
AAAAAAA
PQ

Sample Output

110
46
9
1
0

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 17

J: Romeo and Juliet Secrets
Source file name: romeo.c, romeo.cpp, romeo.java, or romeo.py

Author: Edwin Niño

The Capulets and the Montagues hate each other to death and will never accept the love of Romeo and Juliet.
This is why the two young lovers must hide their affair by making phone chats unintelligible to their parents.
They do this by altering the messages in their chat using the following three-step process:

1. First, they remove spaces and punctuation marks, and make every letter lowercase.

2. Then, they choose a word W (e.g., their names) they want to hide.

3. Finally, they replace in every occurrence of W a substring of length K with that many random letters.

For example, assume Juliet wants to hide the word Romeo in the message

O Romeo, Romeo! Wherefore art thou Romeo?

After the first step, the encrypted message will be

oromeoromeowhereforeartthouromeo

Note that the word Romeo appears at positions 2, 7, and 28. If K = 2, then in each one of these occurrences a
substring of length two must be replaced with exactly two random letters. One possible encrypted version of the
original message under this scheme could be

oxwmeorozkowhereforeartthouromeo

Unfortunately, Lord Capulet is aware of Romeo and Juliet secret, and he has intercepted one of Juliet’s messages.
He needs your help in writing a program to find a given word in the intercepted message, even if that word was
altered using the secret scheme. Specifically, Lord Capulet wants to know how many times the given word could
appear in the original message.

Input

The first line of input contains the number of test cases. Each test case consists of three lines:

• A line containing a string T : the message intercepted by Lord Capulet (1 ≤ |T | ≤ 105).

• A line containing a string W: the word Lord Capulet wants to find in T (1 ≤ |W | ≤ |T |).

• A line containing integer K (1 ≤ K ≤ |W |).

Both T and W will exclusively consist of lowercase letters of the English alphabet (a, . . . ,z).

The input must be read from standard input.

Output

For each test case, print a single line indicating the number of occurrences of word W in message T , including
all possible encrypted versions of W. Occurrences that overlap must be counted separately.

The output must be written to standard output.

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 18

Sample Input

3
oxwmeorozkowhereforeartthouromeo
romeo
2
abcabcabcabcabc
aba
1
abcabcabcabcabc
acb
2

Sample Output

3
5
9

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 19

K: Soccer Championship
Source file name: soccer.c, soccer.cpp, soccer.java, or soccer.py

Author: Rafael García

A sports journalist has gained access to the results of a soccer league and wants to calculate the final standings.
In this league, three points are given to the team winning a match, one point for each team in a draw, and none
for a defeated team.

The standing of each team in the league shall be determined as follows:

1. greatest number of points obtained in all matches;

2. greatest goal difference in all matches (i.e., goals scored minus goals against);

3. greatest number of goals scored in all matches; and

4. greatest number of goals scored playing as visitor in all matches.

If two or more teams are equal on the basis of the above criteria, their rankings shall be determined by
lexicographic order on the team’s name (characters are sorted by ASCII value).

The journalist also wants to determine the number of occurrences of the classic sports journalist’s paradox,
namely, the number of matches in which the team losing the game has a better final standing than the one
winning that game.

Input

The input consists of several test cases. The first line of each test case contains a natural number M indicating
the number of matches (1 ≤ M ≤ 64). Each one of the next M lines contains the results of the matches in the
format

L X vs. Y V

where X is the number of goals scored by the local team with name L (0 ≤ X ≤ 32, 1 ≤ |L| ≤ 100) and Y is the
number of goals scored by the visitor team with name V (0 ≤ Y ≤ 32, 1 ≤ |V | ≤ 100, V , L).

You can assume that each team name consists of uppercase characters A-Z, digits 0-9, periods (.), and can
contain blanks. However, blanks do not appear at the beginning or end of a name.

The input must be read from standard input.

Output

For each test case, print a line with the text

The paradox occurs X time(s).

where X is the number of paradoxes found by the end of the league. This line should be followed by the final
standings in the format

1. Name1

2. Name2

...

2017 ACIS REDIS - XXXI Colombian Programming Contest - ACM ICPC 20

N. NameN

where N is the number of teams in the league and such that the i-th place in the final standings is occupied by
the team with name Namei.

The output must be written to standard output.

Sample Input

13
B. DORTMUND 2 vs. 2 REAL MADRID
SP. PORTUGAL 2 vs. 0 LEGIA
SP. PORTUGAL 1 vs. 2 B. DORTMUND
REAL MADRID 5 vs. 1 LEGIA
B. DORTMUND 1 vs. 0 SP. PORTUGAL
LEGIA 3 vs. 3 REAL MADRID
MONACO 3 vs. 0 CSKA M.
SP. PORTUGAL 1 vs. 2 REAL MADRID
B. DORTMUND 8 vs. 4 LEGIA
REAL MADRID 2 vs. 2 B. DORTMUND
LEGIA 1 vs. 0 SP. PORTUGAL
MONACO 1 vs. 0 SP. PORTUGAL
CSKA M. 1 vs. 0 B. DORTMUND
2
TEAM 1 4 vs. 2 TEAM 2
TEAM 2 2 vs. 0 TEAM 1

Sample Output

The paradox occurs 2 time(s).
1. B. DORTMUND
2. REAL MADRID
3. MONACO
4. LEGIA
5. CSKA M.
6. SP. PORTUGAL
The paradox occurs 1 time(s).
1. TEAM 2
2. TEAM 1

