Problem L: Laser Avoidance
 Time Limit: 5 seconds

Description

You start at point ($\mathbf{0 , 0}$) and must reach point (\mathbf{p}, \mathbf{q}) on a flat field. Unfortunately there is a number of lasers you have to avoid. Each laser starts at a point (\mathbf{x}, \mathbf{y}) and shoots out an infinite one directional ray at radian angle $\boldsymbol{\theta}$ from the \mathbf{x}-axis. Given the position of the lasers, find the shortest path you can take without getting hit by a laser.

Input

A number of inputs ($<\mathbf{1 0 0}$). The first row is the three integer \mathbf{n}, the total number of lasers, and the end point (\mathbf{p}, \mathbf{q}). The next \mathbf{n} line, each has two integers \mathbf{x}, \mathbf{y} and a real number $\boldsymbol{\theta}$, describing the laser as defined above as position of laser and the angle with respect to the x -axis.
Note that $\mathbf{0} \leq \mathbf{n}, \mathbf{p},|\mathbf{q}|,|\mathbf{x}|,|\mathbf{y}| \leq \mathbf{1 0 0 0 0 0 0}, \boldsymbol{\theta} \in[-\pi, \pi)$.

Output

For each input, output the answer with 5 digits after decimal.

Sample Input

355
211
312
41-1.5
350
521
522
5-1.5

Sample Output

7.63441
5.00000

