Problem L: Laser Avoidance Time Limit: 5 seconds

Description

You start at point (0,0) and must reach point (p,q) on a flat field. Unfortunately there is a number of lasers you have to avoid. Each laser starts at a point (x,y) and shoots out an infinite one directional ray at radian angle θ from the x-axis. Given the position of the lasers, find the shortest path you can take without getting hit by a laser.

Input

A number of inputs (<100). The first row is the three integer \mathbf{n} , the total number of lasers, and the end point (\mathbf{p} , \mathbf{q}). The next \mathbf{n} line, each has two integers \mathbf{x} , \mathbf{y} and a real number $\mathbf{\theta}$, describing the laser as defined above as position of laser and the angle with respect to the x-axis. Note that $\mathbf{0} \le \mathbf{n}$, \mathbf{p} , $|\mathbf{q}|$, $|\mathbf{x}|$, $|\mathbf{y}| \le 1000000$, $\mathbf{\theta} \in [-\pi, \pi)$.

Output

For each input, output the answer with 5 digits after decimal.

Sample Input

355

2 1 1

3 1 2

41-1.5

350

521

522

5 2 -1.5

Sample Output

7.63441

5.00000