

The 2016 ACM ICPC

Asia Regional Contest

Dhaka Site

Sponsored by IBM
Hosted by UAP

Dhaka, Bangladesh

19​th​ November 2016
You get 19 Pages

11 Problems &
300 Minutes

Judges & Problemsetters
Name Affiliation

Shahriar Manzoor Southeast University, Bangladesh & CodeMarshal

Mohammad Mahmudur Rahman CodeMarshal & ​Mukto Software Ltd

Md. Shiplu Hawlader University of Dhaka

Md Mahbubul Hasan Google Inc

Derek Kisman Translattice, USA

Rujia Liu Eryiju, China

Monirul Hasan Southeast University, Bangladesh

Kazi Rakibul Hossain Dynamic Solvers Bangladesh

Anindya Das Iowa State University, USA

Mahafuzur Rahman CodeMarshal & ​Mukto Software Ltd

Hasnain Heickal University of Dhaka

Muhammed Hedayetul Islam Google Inc

Shafaet Ashraf HackerRank

Kaysar Abdullah Bangladesh University of Engineering & Technology

Syed Shahriar Manjur Google Inc

2

Rules for ACM-ICPC 2016 Asia Regional Dhaka Site Onsite Contest:

a) Solutions to problems submitted for judging are called runs. Each run is judged as accepted or rejected by the judge, and the

team is notified of the results.

b) Notification of accepted and rejected runs will continue until the end of the contest.

c) A contestant may submit a clarification request to judges only through the CodeMarshal clarification system. If the judges

agree that an ambiguity or error exists, a clarification will be issued to all contestants. Judges may prefer not to answer a

clarification at all, in which case that particular clarification request will be marked as IGNORED in the CodeMarshal clarification

page.

d) Contestants are not to converse with anyone except members of their team and personnel designated by the organizing

committee while seated at the team desk. ​They cannot even talk with their team members when they are walking around the

contest floor to have food or any other purpose. System support staffs or judges may advise contestants on system-related

problems such as explaining system error messages.

e) While the contest is scheduled for a particular time length (five hours), the contest director has the authority to alter the

length of the contest in the event of unforeseen difficulties. Should the contest duration be altered, every attempt will be made

to notify contestants in a timely and uniform manner.

f) ​A team may be disqualified by the Contest Director for any activity that jeopardizes the contest such as dislodging extension

cords, unauthorized modification of contest materials, distracting behavior or communicating with other teams. The ​judges on

the contest floor will report to the ​Judging Director about distracting behavior of any team. ​The judges can also recommend

penalizing a team with additional penalty minutes for their distracting behavior.

g) Nine, ten, eleven or twelve problems will be posed. So far as possible, problems will avoid dependence on the detailed

knowledge of a particular application area or particular contest language. Of these problems at least one will be solvable by a

first year computer science student, another one will be solvable by a second year computer science student and rest will

determine the winner.

h) Contestants will have foods available in their contest room during the contest. So they cannot leave the contest room during

the contest without explicit permission from the invigilators. ​The contestants are not allowed to communicate with any

contestant (even contestants of his own team) or coaches when they are outside the contest arena.

i) Teams can bring up to ​200 pages of printed materials with them and they can also bring five additional books. But they are

not allowed to bring calculators or any machine-readable devices like CD, DVD, Pen-drive, IPOD, MP3/MP4 players, floppy disks

etc. ​Mobile phone MUST be switched off at all times and stored inside a bag or any other place that is publicly non visible

during the entire contest time. Failure to adherence to this clause under any condition will very likely lead to strict

disciplinary retaliation and possible disqualification.

j) With the help of the volunteers, the contestants can have printouts of their codes for debugging purposes. ​Passing of printed

codes to other teams is strictly prohibited.

k) The decision of the judges is final.

l) Teams should inform the volunteers/judges if they don’t get verdict from the codemarshal within 5 minutes of submission.

Teams should also notify the volunteers if they cannot login into the CodeMarshal system. These sort of complains will not be

entertained after the contest.

3

A A Giveaway
Input: Standard Input

Output: Standard Output

A positive integer number is "Special" if it is both a square (eg. ​1, 4, 9, 16, 64 ...​) and a cube (eg. ​1, 8, 27,
64 ...​). The smallest special number is ​1​. Now your job is to write a program that finds whether a
number less than ​100000000 is special or not. It may be noted that there are only ​21 such numbers
within this range and these are ​1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1000000,
1771561, 2985984, 4826809, 7529536, 11390625, 16777216, 24137569, 34012224, 47045881,
64000000 ​and 85766121​. A very childish but legitimate C/C++ solution, which would work for positive
numbers not exceeding ​15624​, is shown below.

#include<stdio.h>
int main(void)
{

int num;
 while(scanf("%d",&num) && num)

{
 if(num==1 || num==64 || num==729 || num==4096)
 printf("Special\n");
 else
 printf("Ordinary\n");

}
 return 0;
}

A C/C++ code that will work for positive numbers not exceeding 15624

Input
The input file contains at most ​1001 lines of input. Each line contains a positive integer less than
100000000​. Input is terminated by a line containing a zero.

Output
For each line of input except the last one produce one line of output. This line contains a string (without
the quotes) ​"Special" if the number is special and ​"Ordinary" if the number is not special. Look at the
output for the sample input for details.

Sample Input Output for Sample Input
1
2
64
100
15625
0

Special
Ordinary
Special
Ordinary
Special

4

B Game of XOR
Input: Standard Input

Output: Standard Output

I assume you know about the XOR operation. In case you don’t know, XOR operation of two binary bits
is ​0​ if they are equal, otherwise ​1​. That means,

0 XOR 0 0

0 XOR 1 1

1 XOR 0 1

1 XOR 1 0

Initially you will be given a binary string (a string consisting of only ​0 or ​1​). This will be the first
generation. You can generate the ​(i+1)​’th generation from the i’th generation by inserting XOR of
adjacent bits. So if the i’th generation is ​01001 then, the ​(i+1)​’th generation would be ​0(1)1(1)0(0)0(1)1
or ​011100011​ (the bits in the parenthesis are ​XOR​ of their adjacent bits).

One more example for more than one generations:

First generation 1 0 0 1 0

Second generation 1 1 0 0 0 1 1 1 0

Third generation 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0

Fourth generation 110110110000000001101101110110110

The spaces are put in the above table for the sake of clarity and to show you how the input is formatted.

You will be given a binary string ​S​, a positive integer ​G and two positions at the ​G​’th generation of ​S
(original binary string ​S is the first generation), you need to find the number of ​0​s and ​1​s between the
given two positions (inclusively).

Since the ​G​’th generation would be very long, the position will be defined by: ​p T​, where ​p is an integer

(​0 ≤ p < the length of ​S​) and ​T is a string of length ​(G - 1) consisting of only ​D (down), or/and ​R (right). To

get the position at the ​G​’th generation, you will start at the ​p​’th position of the first generation and

move according to the command in ​T​.

Suppose you are at the ​i​’th generation and the ​j​’th character (​0​-indexed) in that generation (so initially, ​i

= 1, j = p​).
If the next command is ​D​, new ​i = i + 1 (move to the next generation), new ​j = 2 * j (move exactly down
according to the above table).
If the next command is ​R​, new ​i = i + 1 (move to the next generation), new ​j = 2 * j + 1 (move right in the
next generation, according to the above table).

For details please see the table below:

5

p T The position (bold) at the ​G​’th generation denoted by “​p T​” of 10010
0 DRR 110​1​10110000000001101101110110110
2 RRR 11011011000000000110110​1​110110110
1 RDD 110110110000​0​00001101101110110110

Below the “0 DRR” case is shown.

Input
The first line of the input contains an integer ​T (T ≤ 50) which denotes the number of test cases. ​T test
cases follow.

There are three lines in a case. First line contains ​S (​1 ≤ the length of ​S ​≤ 100000​) and ​G (1 ≤ G ≤ 10000)​.
Next two lines contain two positions in the ​G​’th generation denoted by “p T” (​0 ≤ p < ​the length of ​S ​and
The length of T = ​G - 1​) as above. You may assume that ​“p T” is a valid input (i.e. it won’t be like: ​p = (|S|
- 1) and ​T = R​… since there is nothing to the right of the last character). You may also assume that the
position denoted in the second line would not be beyond the position denoted in the third line.

Output
For each test case, output case number followed by number of ​0​s and ​1​s. Since number of ​0​s and ​1​s
would be large, you need to output them by modulo ​342307123​. For details of the input/output format
please look at the sample input/output.

Sample Input Output for Sample Input
2
10010 4
0 DRR
1 RDD
01001 2
0 D
4 D

Case 1: 6 4
Case 2: 4 5

6

C National Bomb Defusing Squad
Input: Standard Input

Output: Standard Output

You are an IT and Statistics specialist in the National Bomb Defusing Squad. You have to use your
programming and statistical skills to find out locations of probable suicide bomb attacks. Sometimes you
also have to find the blast radius of bombs from the death toll. In this specific problem, you will have to
find the expected number of deaths due to a suicide bomb attack in a crowded place. For simplicity, in
this problem you can assume:

(1) Each person can be considered as a point in a ​2-D Cartesian plane. So an ​(x, y) coordinate can be
used to denote the location of a person. Here ​x​ and ​y​ are always non-negative integers.
(2) All the persons in a scenario are equally likely to carry a bomb. But exactly one person will carry the
bomb.
(3) More than one person can be at the same coordinate.
(4) A suicide bomb has a blasting radius ​R​. Everyone within the blasting radius dies. For example a
person at location ​(p, q) is carrying a bomb and there is another person at ​(m, n)​. When the bomb
explodes at ​(p, q) the person at ​(m, n) will die if his distance from (p, q) is not more than ​R​. The problem
for you to solve is - for a given scenario you will have to calculate the death toll for up to thousand
values of R.

Input
The input file contains maximum ​7​ test cases.

First line of each test case contains two integers ​N (0 < N ≤ 3000) and ​Q (0 < Q ≤ 1000)​. Here ​N denotes
the number of people in the scenario and ​Q denotes the number of queries to follow. Each of the next
N lines contains two integers ​(x​i​, y​i​) that denotes the Cartesian coordinate of one person in the scenario.
These integers are non negative and do not exceed ​25000​. Each of the next ​Q lines contains a single
integer ​R​j​ (0<R​j​<40001). ​Input is terminated by a line containing two zeroes.

Output
For each set of input produce ​Q lines of outputs. Each of this ​Q ​lines contains output for one query - The
expected number of deaths if the blast radius of the bomb is ​R​j​. This value should be rounded to two
digits after the decimal point. ​Print a blank line after the output for each test case.

Sample Input Output for Sample Input
4 3
1 1
1 2
12 3
40 40
1
10
100
0 0

1.50
1.50
4.00

7

D Rational Grading
Input: Standard Input

Output: Standard Output

Grading exam scripts of a programming course is often a pain and to reduce the pain teachers often give
full marks only when the examinee’s output matches exactly with the correct one. Then the mark can
be easily calculated as a percentage of matching. But in some scenario, this approach may not be right -
especially in those cases where the output of each step depends on that of the previous one. For
example in the figure below you can see a program and its correct output. The 2nd, 3rd and 4th output
depends on the output of the previous lines. So if the output of the first line is wrong and the next three
lines are correct the examinee should not get ​3 marks because he has made mistakes in all four cases
(Or made a mistake while copying from his friend).

A simple C++ and Java Program on the left and corresponding correct output on the right

So to grade such a program we adopt the following new policy - we should judge the correctness of
each line based on the output of the ​immediate previous line. For example, if for the program above if
someone's output is:
1000
1000
1001
999

8

He/she should get ​3 marks. Because, the output of the first line is incorrect but based on that line's
output, the output of next three lines are correct.

Given a program's description and its output, you job is to calculate the mark that the examinee will get.

Input
There are at most 1001 test cases. The description of each test case is given below:

Each test case starts with two integers ​ivalue (0 < ivalue​10 ​≤ 1000000​10​) and ​t (0 < t ≤ 30)​. Here ​ivalue
denotes the initial value of the variable ​i​. This value can be in decimal (leftmost digit is not zero), octal
(leftmost digit is zero) or hexadecimal (starts with 0x and non-numeric digits will be in uppercase). ​t
denotes the total number of printing statements in the program. Each of the next ​t lines contains an
expression that the printing function will print followed by the output for the expression written by the
examinee. The expressions can be anyone from the following instruction set, ​s = {i++, ++i, i--, --i, i}, the
output value will be between 0 and 1000000 (inclusive) and of course in decimal.

Input is terminated by a line containing two zeroes.

Output
For each test case produce one line of output. This line contains the mark that the student will get
according to the new policy.

Sample Input Output for Sample Input
766 4
++i 767
i++ 767
i-- 768
--i 766
0766 4
++i 789
i++ 789
i-- 790
--i 788
0x766 4
++i 1895
i++ 1895
i-- 1896
--i 1894
0 0

4
3
4

Illustration of 2nd Sample Input
Expression Current Value of i before printing based on

ivalue​10​ or the value in the previous line
Printed
Value
(By student)

Correct
Expected Value

Marks
obtained

Value of i
after
being printed

++i 0766 = 502 789 503 0 789
i++ 789 789 789 1 790
i-- 790 790 790 1 789
--i 789 788 788 1 788
Total Marks obtained 3

9

E Balanced String
Input: Standard Input

Output: Standard Output

A string consisting of parenthesis ​“(”​ and ​“)”​ is called ​balanced string​ if any of the following is true.

a. If the string is empty.
b. If ​A​ and ​B​ are balanced string, ​AB​ is also balanced string.
c. If ​A​ is a balanced string, ​(A)​ is also a balanced string

Now from a balanced string we can generate a sequence of numbers. The sequence is generated as
follows:

● Start scanning the string from left to right and after each scan print ​number of open parenthesis
“(“ scanned so far ​− ​number of close parenthesis “)” scanned so far (please note the minus
sign in between)

● After the sequence is generated it is rearranged randomly.

For example, suppose you have a balanced string = ​“()()”
The sequence generated after the first step: ​ 1 0 1 0
Sequence (one of many) after the rearrangement in the second step: ​0 1 0 1

Your task is - given a sequence in random order, output the lexicographically smallest balanced string if
one exists, otherwise output “invalid”.

Note​: ​“(” is lexicographically smaller than ​“)”. Also remember the string you generate ​must produce any
sequence following above mentioned two steps which can be rearranged to match the sequence given
in the input.

Input
There will be ​T (1 ≤ T ≤ 11) test cases. For each test, the first line contains an integer ​N (1 ≤ N ≤ 100000)
where ​N denotes the number of integers in the sequence. The second line contains ​N integers
separated by spaces describing the sequence. You can assume all the inputs in the sequence will fit in
32​ bit signed integer data type.

Output
For each case you have to output the balanced string or “invalid” along with case number. There should
not be any intermediate spaces between brackets in the output. See the output format below for more
details.

Sample Input Output for Sample Input
2
4
0 0 1 1
5
1 2 3 4 5

Case 1: ()()
Case 2: invalid

10

F Number of Connected Components
Input: Standard Input

Output: Standard Output

Given ​N nodes, each node is labeled with an integer between ​1 and ​10​6 (inclusive and labels are not
necessarily distinct)​. Two nodes have an edge between them, if and only if the ​GCD (Greatest Common
Divisor) of the labels of these nodes is ​greater than 1. Count the number of connected components in
the graph.

Input
First line of the input ​T (T ≤ 100) denotes the number of testcases. Then ​T cases follow. Each case
consists of 2 lines. The first line has a number ​N (1 ≤ N ≤ 10​5​) denoting the number of nodes. The next
line consists of ​N​ numbers. The ​i’th (1 ≤ i ≤ n)​ number ​X​i ​ (1 ≤ X​i ​≤ 10​6​) ​denotes the label of the node ​i​.

Output
For each case you have to print a line consisting consisting the case number followed by an integer

which denotes the number of connected components. Look at the output for sample input for details.

Sample Input Output for Sample Input
2
3
2 3 4
6
2 3 4 5 6 6

Case 1: 2
Case 2: 2

11

G Extreme XOR Sum
Input: Standard Input

Output: Standard Output

Imagine you have an array of ​n integers ​a = [a​0​, a​1​, a​2​, …, a​n-1​]​. To find the ​extreme sum of them you
have to do the following operations:

1. Create a new list ​t = [a​0​ + a​1​, a​1​ + a​2​, ..., a​n-2​ + a​n-1​]​.
2. Let ​a = t.
3. If ​a​ has only one element remaining, exit. Otherwise go to ​1​.

The last remaining element is the extreme sum for the given array. Extreme sum for ​a = [1, 2, 4]​ is ​9​.

To find the extreme XOR Sum, you have to do ​XOR operation instead of addition operation (in the step
1​ above).

You are given an array of integers ​a​. You have to answer ​q queries. Each query has the form of ​b e​. You
have to find the extreme XOR sum of the array ​[a​b​, a​b+1​, a​b+2 ​... a​e ​]​.

Input
The first line contains ​T (1 ≤ T ≤ 25)​. For each test case:

● The first line contains ​n (1 ≤ n ≤ 10​4​)​.
● The second line contains ​n integers denoting the array ​a​. Each element of the array will be an

integer between ​0​ and ​10​9​.
● The third line contains ​q (1 ≤ q ≤ 30000)​.
● Each of the next ​q​ lines contains two integers ​b​ and ​e (0 ≤ b ≤ e < n)​.

Output
For each test case, print the case number in the first line. In the next ​q lines, print a single line, the
extreme XOR sum for the range ​[b, e] ​for the corresponding query.

Sample Input Output for Sample Input
1
5
1 4 6 7 8
3
0 0
0 1
2 4

Case 1:
1
5
14

12

H Harmonic Matrix
Input: Standard Input

Output: Standard Output

Matrix is a collection of data, i.e. ​[3, 4, 5, 1, 2, 0, 6] is an example of ​1D matrix of integers. Matrix can be
of any dimension. Phase of a matrix is another matrix, defines the comparison of matrix elements with
respect to the adjacent elements. Here ​3<4, 4<5, 5>1, 1<2, 2>0, 0<6​. If ​1 resembles a ​‘<’ and ​0
resembles a ​‘>’​, phase of the above mentioned matrix is ​[1, 1, 0, 1, 0, 1]​.

Now a ​2D matrix can be visualized as a collection of ​1D row matrices placed vertically one after another
or as a collection of ​1D column matrices placed horizontally one beside another. The phase of a ​2D
matrix is a combination of row phase matrices and column phase matrices. Every single row(/column) of
the row(/column) phase matrix is generated from the corresponding row(/column) of the original ​2D
matrix. For example, the phase of the ​2D matrix on the left is the combination of two boolean ​2D
matrices on the right in the following picture.

 83 85 87 15

 93 35 84 92

 49 21 62 27

 90 59 63 26

Original 2D Matrix

1 1 0

0 1 1

0 1 0

0 1 0

Row phase matrix

1 0 0 1

0 0 0 0

1 1 1 0

Column phase matrix

A 2D matrix is harmonic if,
- All the rows of the row phase matrix are same and
- All the columns of the column phase matrix are same.

Following matrix on the left is the shuffled version of the previous one. But it satisfies the above
mentioned two criteria. So it’s a harmonic matrix.

 83 85 87 15

 84 92 93 35

 21 49 62 26

 59 63 90 27

Permuted 2D Matrix

1 1 0

1 1 0

1 1 0

1 1 0

Row phase matrix

1 1 1 1

0 0 0 0

1 1 1 1

Column phase matrix

Given a ​2D matrix of ​distinct integers, your task is to shuffle the elements of the matrix so that it
becomes harmonic. For shuffling, you can perform only one kind of operation, take two adjacent
elements vertically or horizontally and swap them. You have to sequentially output all the swap
operations you need to do to shuffle the given matrix. But the number of swaps you are performing
can’t be infinite, right?

13

Input
First line of the input is an integer ​T (1 ≤ T ≤ 15)​, the number of test cases. Following lines contain ​T test

cases. A case starts with a line containing space separated integers ​R and ​C (​1 ≤ R, C ≤ 1003​)

representing the number of row and column of the input matrix. Each of the following ​R lines contains ​C

space separated integers which constitutes the input matrix ​A​. You can assume that all the elements of

matrix A are distinct, strictly positive and do not exceed ​1000000009.

Output
For each test case output contains the test case id in the first line. Next line contains an integer ​n​, the

number of swap operations you are performing to make the array harmonic. Each of the following ​n

lines contains the swap operation formatted with four integers ​r1, c1, r2, c2 (1 ≤ r1, r2 ≤ R and 1 ≤ c1, c2

≤ C)​. Condition ​(|r1-r2| + |c1-c2|) = 1 should hold, this means you are swapping two adjacent elements

A(r1, c1) and ​A(r2, c2)​. The number of swap operations has to be bounded by 2.5*R*C, that means n

can be at most 2.5*R*C​. See the sample for exact format. Any valid answer that satisfies the

constraints will be accepted.

Sample Input Output for Sample Input
1
3 3
3 4 6
7 5 8
1 9 2

Case 1:
3
2 1 2 2
3 2 3 3
2 3 3 3

Explanation:

3 4 6
7 5 8
1 9 2

Input Matrix

3 4 6
5 7 8
1 9 2

After swap
2 1 2 2

3 4 6
5 7 8
1 2 9

After swap
3 2 3 3

3 4 6
5 7 9
1 2 8

After swap
2 3 3 3

14

I In the Kingdom of Hirak
Input: Standard Input

Output: Standard Output

Once upon a time, there was a king named “Hirak Raj”. He was so cruel and greedy that farmers in his
kingdom had to pay taxes even when they were starving. Diamonds were accumulated in his treasury,
but the workers in the mine were not paid properly. Those who tried to protest were taken to
“​Jantar-mantar Ghar​”, the chamber for brainwashing people. The king divided his kingdom into ​R
regions. People in one region could communicate by sending letters to any other person within the
same region but no letter could be sent from one region to another.

A reputed teacher named “Udayan Pandit” was preparing to revolt against the king by educating his
disciples in all the regions of the kingdom. Most of his disciples wrote encrypted letters to each other to
fix the time and place of their meetings. Any disciple would always forward any letter (s/he wrote or
received from others) to other disciples s/he knew in the same region. ​Udayan Pandit called a collection
of his disciples a “group” if a letter written by any member of that group would eventually reach all
other members of the group. Moreover, a ​group always contained the maximal number of disciples, i.e.
no more disciple could be added to a ​group without violating the property stated above. Hirak Raj knew
all the information about who was communicating with whom, but his police could not decipher the
encrypted letters and distinguish the secret letters from other normal letters.

Soon Hirak Raj became very desperate to find all the miscreants in the kingdom who want to dethrone
him. He ordered every citizen to be taken to an updated version of “Jantar-mantar Ghar”, where a
device was installed to determine whether a citizen had any intention to revolt or not. All the citizens
classified as miscreants were arrested immediately. But the king was not satisfied with the efficiency of
the machine. So he made another rule: any citizen who was not yet taken to jail would be arrested if at
least ​K​ members of his/her ​group​ were already classified as miscreants by the device.

Udayan Pandit noticed that the device in “Jantar-mantar Ghar” is faulty. It classified any person as a
miscreant with probability ​p without depending on any information of that person. So, he wanted to
know the expected number of arrested disciples in every ​region​ of the kingdom.

Input
The first line of input file contains a single integer, ​T (1 ≤ T ≤ 10)​. Then ​T test cases follow. Each case
starts with a line containing two integers, ​R (1 ≤ R ≤ 20) and ​K (1 ≤ K ≤ 2000) and two more integers ​a
and b (0 < a < b ≤ 1000)​, where ​a/b = p​, the probability of classifying a disciple as a miscreant. Then
there will be descriptions of the communications in those ​R regions. Each description starts with a line
containing two integers, ​n (2 ≤ n ≤ 50000)​, number of Udayan Pandit’s disciples in the ​region and ​m (1 ≤
m ≤ 100000)​, the number of communications between two disciples. Then ​m lines follow. Each of these
m lines contains two integers ​u and v (1 ≤ u, v ≤ n ​and u ≠ v)​, indicating disciple ​u forwards any letter
(s/he wrote or received from others) to disciple ​v​.

Output
For each case, output “​Case <x>:​” in a separate line, where ​x denotes the case number. Then there will
be ​R lines of output for each case. For each of these ​R lines, output “​Region <y>: <z>​”, where ​y is the

15

region number (starting from ​1 to​ R​) and ​z is the expected number of disciples arrested. ​Suppose, z =
u/v in the reduced form. Print u*(v^-1) mod 1000000007 (10^9 + 7), where v^-1 is the inverse of v
mod 1000000007. You may assume that there will be unique modular inverse v^-1 mod 1000000007.

Sample Input Output for Sample Input
2
2 2 1 2
2 2
2 1
1 2
4 5
1 2
2 3
1 3
3 4
4 2
2 1 1 2
4 5
1 2
2 3
1 3
2 1
3 4
2 2
2 1
1 2

Case 1:
Region 1: 1
Region 2: 375000005
Case 2:
Region 1: 500000006
Region 2: 500000005

Explanation of Region 1 in the 1st test case: ​There are only two disciples in the region and they form

a ​group​ . Let x be the random variable which denotes the number of disciples arrested. So, E[x] = 1 * Pr(x

= 1) + 2 * Pr(x = 2). Now, Pr(x = 1) = Pr(1 was classified as miscreant by the device and 2 was not) + Pr(2

was classified as miscreant by the device and 1 was not) = 0.5*0.5 + 0.5*0.5 = 0.5. For the remaining

part, Pr(x = 2) = Pr(Both 1 and 2 were classified as miscreants by the device) + Pr(Either 1 or 2 was

classified as miscreant by the device and the other one was arrested later) = 0.5*0.5 + 0 = 0.25. So, E[x]

= 1 * 0.5 + 2 * 0.25 = 1, which is the expected number of arrested disciples.

16

J Prime Distance
Input: Standard Input

Output: Standard Output

You have an empty ​1 * n grid. The cells of the grid are indexed from ​1 to​ n ​from left to right. You have to

put ​m identical coins in the grid. A cell can contain zero or more coins. If you pick a pair of cells each

containing at least one coin, the distance between the cells must be a prime number.

How many ways you can place the coins? As the number can be large, find answer modulo ​10​9​+7​. Two

ways are different if there is at least one cell which contains different number of coins.

The distance between two cells indexed ​i, j​ is |​i - j|​.

Input
The first line contains ​T (1 ≤ T ≤ 2000) (the number of test cases). Each of the next ​T lines contains two

integers ​n (1 ≤ n ≤ 10​5​)​ and ​m(1 ≤ m ≤ 10​5​)​ separated by a single space.

Output
For each case, print the case number and the answer modulo ​10​9 ​+ 7​.

Sample Input Output for Sample Input
2
3 2
6 3

Case 1: 4
Case 2: 24

In the first case, you can put both coins in cell 1, 2 or 3. Or you can put a coin in cell 1 and put another
coin in cell 3.

Note that in the 2nd case putting 3 coins in cell 1, 3, 5, is not valid, because the distance between cell 5
and cell 1 is a non-prime.

17

K 8-ball Rack
Input: Standard Input

Output: Standard Output

8-ball is a pool game typically played with ​15​ object balls. The object balls are of following types:
1. Solids, numbered from ​1-7
2. Stripes, numbered from ​9-15
3. Eight ball: as the name suggests, numbered 8 and is a black solid ball.

Figure 1: A valid 8 ball rack

In a valid 8-ball rack, the object balls are arranged in a triangle as the figure above, following these
rules:
1. The eight ball has to be in the center.
2. The two rear corner balls have to be of different types. If one of them is stripes, then the other one
must be from solids. In the picture above, two rear corner balls are 11 and 5. ​11 is a stripe and ​5 is a
solid.

You are given an ​8 ball rack (possibly incomplete). If a ball is not present in the rack, then you can
assume that they are outside of the rack. You have choice of three different operations:
1. Swap any two balls already in the rack.

18

2. Pick a ball that’s not already in the rack from outside and put that into the rack.
3. Pick a ball that’s already in the rack and put it outside.
Given the initial rack and the cost of the different types of operations, find the minimum cost to form a
valid 8-ball rack.

Input
The input file starts with a positive integer ​T ​(​T ≤ 500) denoting the number of test cases. Each of the ​T
test cases starts with three non negative integers, ​S​, ​P​, and ​R​, where,

1. S​ denotes the cost of swapping positions of any two balls.
2. P​ denotes the cost of adding a ball to the rack from outside.
3. R denotes the cost of removing a ball from the rack. Note that you can (well, you will have to)

return this ball to any place in the rack later.
4. 0 ≤ S, P, R ≤ 100000

Then come exactly five lines denoting the rack’s formation. The ​i’​th line has ​i non negative numbers in
it. If the ​j​’th number on the ​i​’th line is ​0​, then it means that position is empty. It is guaranteed that no
non-zero number appears more than once in the rack.

For more on input specification, please see the sample input section.

Output
For each case, print a single line, ​“Case #x: y”​, where x is the case number and y an integer number
which denotes the minimum cost to form a valid rack for that case.

Sample Input Output for Sample Input
2
1 1 1
9
7 12
15 8 1
6 10 3 14
11 2 13 4 5
1 2 3
9
7 12
15 8 1
6 10 3 14
0 0 0 0 0

Case 1: 0
Case 2: 10

Note:
Case 1 is the rack given in the figure 1, which is already valid. So the output is 0
Case 2 is the rack given in the figure 1 only with the difference that, all the balls in the last row is missing. A valid rack
can be formed with exactly 5 type 2 operations. As P = 2, the output for case 2 is 2 * 5 = 10.

19

