

	Prime Distance
J	Input: Standard Input
	Output: Standard Output

You have an empty **1** * **n** grid. The cells of the grid are indexed from **1** to **n** from left to right. You have to put **m** identical coins in the grid. A cell can contain zero or more coins. If you pick a pair of cells each containing at least one coin, the distance between the cells must be a prime number.

How many ways you can place the coins? As the number can be large, find answer modulo **10⁹+7**. Two ways are different if there is at least one cell which contains different number of coins.

The distance between two cells indexed **i**, **j** is |**i** - **j**|.

Input

The first line contains T ($1 \le T \le 2000$) (the number of test cases). Each of the next T lines contains two integers n ($1 \le n \le 10^5$) and m($1 \le m \le 10^5$) separated by a single space.

Output

For each case, print the case number and the answer modulo $10^9 + 7$.

Sample Input

Output for Sample Input

In the first case, you can put both coins in cell 1, 2 or 3. Or you can put a coin in cell 1 and put another coin in cell 3.

Note that in the 2nd case putting 3 coins in cell 1, 3, 5, is not valid, because the distance between cell 5 and cell 1 is a non-prime.