

You have an empty $\mathbf{1}^{*} \mathbf{n}$ grid. The cells of the grid are indexed from $\mathbf{1}$ to \mathbf{n} from left to right. You have to put \mathbf{m} identical coins in the grid. A cell can contain zero or more coins. If you pick a pair of cells each containing at least one coin, the distance between the cells must be a prime number.

How many ways you can place the coins? As the number can be large, find answer modulo $10^{9}+7$. Two ways are different if there is at least one cell which contains different number of coins.

The distance between two cells indexed \mathbf{i}, \mathbf{j} is $|\mathbf{i}-\mathbf{j}|$.

Input

The first line contains $\mathrm{T}(\mathbf{1} \leq \mathrm{T} \leq \mathbf{2 0 0 0})$ (the number of test cases). Each of the next T lines contains two

Output

For each case, print the case number and the answer modulo $10^{9}+7$.

Sample Input

| 2 | | Case 1: 4 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | Case 2: 24 |
| 6 | 3 | |

In the first case, you can put both coins in cell 1, 2 or 3 . Or you can put a coin in cell 1 and put another coin in cell 3.

Note that in the 2 nd case putting 3 coins in cell $1,3,5$, is not valid, because the distance between cell 5 and cell 1 is a non-prime.

