

Imagine you have an array of **n** integers $\mathbf{a} = [\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n-1}]$. To find the **extreme sum** of them you have to do the following operations:

- 1. Create a new list **t** = [**a**₀ + **a**₁, **a**₁ + **a**₂, ..., **a**_{n-2} + **a**_{n-1}].
- 2. Let **a = t.**
- 3. If a has only one element remaining, exit. Otherwise go to 1.

The last remaining element is the extreme sum for the given array. Extreme sum for **a** = [1, 2, 4] is 9.

To find the extreme XOR Sum, you have to do **XOR operation** instead of addition operation (in the step **1** above).

You are given an array of integers **a**. You have to answer **q** queries. Each query has the form of **b e**. You have to find the extreme XOR sum of the array $[a_b, a_{b+1}, a_{b+2} \dots a_e]$.

Input

The first line contains **T** ($1 \le T \le 25$). For each test case:

- The first line contains **n** $(1 \le n \le 10^4)$.
- The second line contains **n** integers denoting the array **a**. Each element of the array will be an integer between **0** and **10**⁹.
- The third line contains $q (1 \le q \le 30000)$.
- Each of the next **q** lines contains two integers **b** and **e** $(0 \le b \le e < n)$.

Output

For each test case, print the case number in the first line. In the next **q** lines, print a single line, the extreme XOR sum for the range **[b, e]** for the corresponding query.

Sample Input

Output for Sample Input

1		Case 1:
5		1
1	4 6 7 8	5
3		14
0	0	
0	1	
2	4	