

B Game of XOR
Input: Standard Input

Output: Standard Output

I assume you know about the XOR operation. In case you don’t know, XOR operation of two binary bits
is 0 if they are equal, otherwise 1. That means,

0 XOR 0 0

0 XOR 1 1

1 XOR 0 1

1 XOR 1 0

Initially you will be given a binary string (a string consisting of only 0 or 1). This will be the first
generation. You can generate the (i+1)’th generation from the i’th generation by inserting XOR of
adjacent bits. So if the i’th generation is 01001 then, the (i+1)’th generation would be 0(1)1(1)0(0)0(1)1
or 011100011 (the bits in the parenthesis are XOR of their adjacent bits).

One more example for more than one generations:

First generation 1 0 0 1 0

Second generation 1 1 0 0 0 1 1 1 0

Third generation 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0

Fourth generation 110110110000000001101101110110110

The spaces are put in the above table for the sake of clarity and to show you how the input is formatted.

You will be given a binary string S, a positive integer G and two positions at the G’th generation of S
(original binary string S is the first generation), you need to find the number of 0s and 1s between the
given two positions (inclusively).

Since the G’th generation would be very long, the position will be defined by: p T, where p is an integer

(0 ≤ p < the length of S) and T is a string of length (G - 1) consisting of only D (down), or/and R (right). To

get the position at the G’th generation, you will start at the p’th position of the first generation and

move according to the command in T.

Suppose you are at the i’th generation and the j’th character (0-indexed) in that generation (so initially, i

= 1, j = p).
If the next command is D, new i = i + 1 (move to the next generation), new j = 2 * j (move exactly down
according to the above table).
If the next command is R, new i = i + 1 (move to the next generation), new j = 2 * j + 1 (move right in the
next generation, according to the above table).

For details please see the table below:

5

p T The position (bold) at the G’th generation denoted by “p T” of 10010
0 DRR 110110110000000001101101110110110
2 RRR 110110110000000001101101110110110
1 RDD 110110110000000001101101110110110

Below the “0 DRR” case is shown.

Input
The first line of the input contains an integer T (T ≤ 50) which denotes the number of test cases. T test
cases follow.

There are three lines in a case. First line contains S (1 ≤ the length of S ≤ 100000) and G (1 ≤ G ≤ 10000).
Next two lines contain two positions in the G’th generation denoted by “p T” (0 ≤ p < the length of S and
The length of T = G - 1) as above. You may assume that “p T” is a valid input (i.e. it won’t be like: p = (|S|
- 1) and T = R… since there is nothing to the right of the last character). You may also assume that the
position denoted in the second line would not be beyond the position denoted in the third line.

Output
For each test case, output case number followed by number of 0s and 1s. Since number of 0s and 1s
would be large, you need to output them by modulo 342307123. For details of the input/output format
please look at the sample input/output.

Sample Input Output for Sample Input
2
10010 4
0 DRR
1 RDD
01001 2
0 D
4 D

Case 1: 6 4
Case 2: 4 5

6

