Problem I. Recurrences

Input:	Standard
Output:	Standard
Author(s):	Eddy Cael Mamani Canaviri - Coderoad Bolivia

Ailin recently learned linear recurrences, but apparently not the right way. She can not solve a problem proposed by her father ...

Can you help her? She has the following system of recurrences:

$$
\begin{gathered}
A_{n}=4 * A_{n-1}-3 * B_{n-1}-3 * C_{n-1} \\
B_{n}=5 * A_{n-1}-4 * B_{n-1}-4 * C_{n-1} \\
C_{n}=B_{n-1}-A_{n-1}
\end{gathered}
$$

And she needs to calculate the value of $S(n)$ defined as follows:

$$
S(n)= \begin{cases}0 & \text { if } n=0 \\ S(n-1)+A_{n}+B_{n}+C_{n} & \text { if } n \geq 1\end{cases}
$$

She knows that there is a method to calculate this result quickly, but she is something lazy and asks you for help to find the answers.

Input

The entry contains a number T, the number of test cases $\left(1 \leq T \leq 5 * 10^{5}\right)$. Each of the following T lines contain an integer $n\left(1 \leq n \leq 9 * 10^{18}\right)$ and the values of $A_{0}, B_{0}, C_{0}\left(0 \leq A_{0}, B_{0}, C_{0} \leq 9\right)$.

Output

The output will contain T lines, each with the value of $S(n)$ defined above. Since the sum can be very large, print only the last digit. More formally, in each case print a no negative number, the result modulo 10.

Remember that if $a \bmod M<0$ then you should add M to the result, so the answer is no negative. More formally you can use: $((a \bmod M)+M) \bmod M$

Example

Input	Output				
5					
1	1	2	3		
	1	2	3		
			5		
7	1	2	3		
100001	1	2	1		
900000	1	2	9	$\quad 1$	7
:---					

Use fast I/O methods

