

Problem G. Generate, Sort and Search

Input:	Stan	dard					
Output:	Stan	Standard					
Author(s):	Hugo	Humberto	Morales	Peña	_	UTP	Colombia

We have the following recursive function:

f(1)=x $f(n)=(a\cdot f(n-1)+c) \mbox{ mod } m, \mbox{ with } n\geq 2, \ n\in \mathbb{Z}^+$

Remember that the operation *mod* calculates the remainder of the integer division.

With the previous recursive function you should generate a sequence containing the first n elements, which are: f(1), f(2), f(3), f(4), ..., f(n). Then, you should sort those numbers in ascending order (with respect to its value), so you can tell which number is located in the *i*th position of the sorted sequence.

Input

acm**ICPC** Bolivia

There are several test cases. The first line of each test case has six integer numbers: a, c, m, x, q, n separated by spaces $(2 \le a < m, 0 \le c < m, 3 \le m \le 10^3, 0 \le x < m, 1 \le q \le 10^4, 1 \le n \le 10^8)$. The remaining lines of each test case have q integer numbers. Each one corresponds to the position in the sorted sequence whose value wants to be known.

Output

For each query you should print a single line containing the integer number in the ith position of the sorted sequence.

Example

Input	Output
7 4 9 3 5 10	1
2	8
10	2
3	7
9	3
4	

Use fast I/O methods