
XXX Maraton Nacional de Programacion
Colombia - ACIS / REDIS 2016

ACM ICPC

Problems
(This set contains 11 problems; problem pages numbered from 1 to 23)

General Information
Unless otherwise stated, the following conditions hold for all problems.

Program name

1. Your source file (your solution!) must be called <codename>.c, <codename>.cpp, <codename>.java
or <codename>.py, as indicated below the problem title.

Input

1. The input must be read from standard input.
2. The input contains several test cases. Each test case is described using a number of lines that depends on

the problem.
3. When a line of data contains several values, they are separated by single spaces. No other spaces appear

in the input. There are no empty lines.
4. Every line, including the last one, has the usual end-of-line mark.
5. The end of input is indicated by the end of the input stream. There is no extra data after the test cases in

the input.

Output

1. The output must be written to standard output.
2. The result of each test case must appear in the output using a number of lines that depends on the problem.
3. When a line of results contains several values, they must be separated by single spaces. No other spaces

should appear in the output. There should be no empty lines.
4. Every line, including the last one, must have the usual end-of-line mark.
5. After the output of all test cases, no extra data must be written to the output.
6. To output real numbers, round them to the closest rational with the required number of digits after the

decimal point. Ties are resolved rounding to the nearest upper value.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 1

A: ACIS, A Contagious vIruS
Source file name: acis.c, acis.cpp, acis.java, or acis.py

Author: A. Sotelo

Scientists from REDIS (REsearch of DISeases), a famous investigation center in Raccoon City, accidentally
caused the mutation of a very contagious virus known as ACIS (A Contagious vIruS), just when they were
manipulating ACIS’ DNA. Raphael, the main researcher at REDIS, was infected with ACIS while he was
treating inoculated rats. After that, all persons at REDIS were infected in less than an hour. Immediately he
discovered the issue, Raphael contacted the Major, who decided to quarantine the largest possible circular region
centered at REDIS that is totally inside Raccoon City, whose boundaries are described with a polygon.

The Major wants to know the maximum radius of such circular region. Can you help him?

Input

The input consists of several test cases. The first line of a test case contains a single integer N indicating the
number of vertices of the polygon describing the boundaries of Raccoon City (3 ≤ N ≤ 16). The second line of a
test case contains two blank-separated integers xR and yR (0 ≤ xR ≤ 50, 0 ≤ yR ≤ 50) indicating the position
(xR, yR) where REDIS is located. Then follow N lines: line i contains exactly two blank-separated integers xi

and yi, where (xi, yi) is the position of the i-th vertex of the polygon describing the boundaries of Raccoon City
(0 ≤ xi ≤ 50, 0 ≤ yi ≤ 50). You may assume that there are not two vertices located at the same position, and that
REDIS is located inside the polygon excluding its boundaries. The input ends with a line containing a single
asterisk (‘*’).

The input must be read from standard input.

Output

For each test case, print a single line with a number indicating the radius of the largest possible circular region
centered at REDIS that is totally inside Raccoon City. The answer should be formatted and approximated to
three decimal places. The floating point delimiter must be ‘.’ (i.e., the dot). The rounding applies towards the
nearest neighbor unless both neighbors are equidistant, in which case the result is rounded up (e.g., 78.3712 is
rounded to 78.371; 78.5766 is rounded to 78.577; 78.3745 is rounded to 78.375, etc.).

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 2

Sample Input

12
2 2
0 1
1 1
2 0
3 0
3 1
4 2
3 3
3 4
2 4
1 3
0 3
1 2
4
2 2
0 2
2 0
4 2
2 4
*

Sample Output

1.000
1.414

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 3

B: Binary Land
Source file name: binary.c, binary.cpp, or binary.java

Author: A. Sotelo

Gurin and Malon are a couple of penguins living in Binary Land, a marvelous country. They are trapped in a
mystical maze, described as a grid with cells that are either free spaces or walls. Exactly one of the free spaces is
designated as the love cell, having a nice heart inside a cage. Gurin and Malon are initially located at two free
spaces inside the maze.

The maze is surrounded by walls, so no penguin can move outside it because, as everyone knows, penguins
cannot move through walls.

Gurin (right) and Malon (left) trapped in the maze. North is upside and West is leftside.
Original image taken from Binary Land, Hudson Soft Co., Ltd.

Both penguins can move freely through the free spaces, until they meet at the love cell, where they can fall in
love together. At any given time, a penguin can move from its current cell to an adjacent cell in one of four
possible directions: north, south, east and west.

However, Gurin and Malon were cursed by an evil witch! If a penguin goes north or south, then the other must
automatically go in the same direction; and, if a penguin goes east or west, then the other must automatically go
in the opposite direction. As it was mentioned before, no penguin can move through a wall and additionally,
both penguins can be in the same cell at any given time.

In detail, the curse works as follows:

• If a penguin has a free cell to the north and it moves one step to the north, then the other penguin must
move one step to the north (at the same time). However, if the other penguin had a wall to the north, it
must stay in its current cell.

• If a penguin has a free cell to the south and it moves one step to the south, then the other penguin must
move one step to the south (at the same time). However, if the other penguin had a wall to the south, it

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 4

must stay in its current cell.

• If a penguin has a free cell to the west and it moves one step to the west, then the other penguin must move
one step to the east (at the same time). However, if the other penguin had a wall to the east, it must stay in
its current cell.

• If a penguin has a free cell to the east and it moves one step to the east, then the other penguin must move
one step to the west (at the same time). However, if the other penguin had a wall to the west, it must stay
in its current cell.

Each cursed move of both penguins takes exactly one unit of time. Given a maze, the coordinates of the love cell,
and the initial coordinates of Gurin and Malon, what is the minimum amount of time in which both penguins can
fall in love together?

Input

The input consists of several test cases. The first line of a test case contains two blank-separated integers
R and C (1 ≤ R ≤ 40, 1 ≤ C ≤ 40) indicating, respectively, the number of rows and columns of the maze
(without the surrounding walls). The second line contains six blank-separated integers rL, cL, rG, cG, rM, and
cM (1 ≤ rL, rG, rM ≤ R, and 1 ≤ cL, cG, cM ≤ C) indicating the coordinates (rL, cL) of the love cell, the initial
coordinates (rG, cG) of Gurin, and the initial coordinates (rM, cM) of Malon. Each of the next R lines contains
C characters ‘.’ or ‘#’, where ‘.’ represents a free space and ‘#’ represents a wall. You may assume that the
coordinates (rL, cL), (rG, cG) and (rM, cM) correspond to free spaces, and that the given maze is surrounded by
walls.

The input must be read from standard input.

Output

For each test case, output a single line with the minimum amount of time in which both penguins can meet at the
love cell or with the text ‘NO LOVE’ if it is impossible for them to meet at the love cell.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 5

Sample Input

10 15
1 8 10 9 10 7
...............
.###.###.###.##
##.#.#.###.#.#.
.......#.......
.#####.#.#####.
.......#.......
##.#.#.#.#.#.##
.......#.......
.#############.
.......#.......
3 3
1 2 3 2 3 2
...
.#.
...
3 3
1 2 3 2 3 2
...
###
...
3 3
3 2 3 2 3 2
...
###
...

Sample Output

31
4
NO LOVE
0

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 6

C: Castaways
Source file name: castaways.c, castaways.cpp, castaways.java, or castaways.py

Author: R. Cardoso

Alexa and Bob are castaways survived to a shipwreck arriving to a lonely island. This island is relatively near to
the mainland but there is no easy way to send an alarm message to tell what happened.

Alexa and Bob arrived to the island coast clinging to a wooden cargo box that -besides being a lifesaver-
contained a lot of wooden sticks of different sizes and a fabric roll. Since they are experimented windsurfers,
they are planning to build two windsurf boards that they could use to get off the island sailing to mainland. Each
windsurf board may be made with a side plank of the wooden box. And the board must be propelled by the
wind, so that they want to build sails for the two boards. The sails may be constructed with some wooden sticks
forming a frame and a piece of fabric from the roll.

But in order to build a wind-surf sail, Alexa prefers a triangular one and Bob a rectangular one. There are
arguments to support that triangles are better than rectangles when one talks about windsurf sails, and now it is
not possible that Alexa and Bob come to a common solution. They know, however, that it is better to build sails
with a big area, so that the wind may propel the board more effectively.

To avoid further discussions they come to the next problem to solve: design the largest pair of triangular and
rectangular sails, given the sizes of the wooden sticks (there is enough fabric in the roll to make any sail). When
they say ‘‘the largest pair’’ they mean a triangle and a rectangle whose areas, together, are as big as possible.
Note that it can be that such a maximal pair could be formed by a triangle and a void rectangle, by a void
triangle and a rectangle, or by a void triangle and a void rectangle, because in this way the total area may be
maximized.

Lets illustrate the situation with some examples. Suppose first that the box contains only 3 sticks, of lengths 3, 4
and 5 cm. Then the castaways can build only a triangular sail, with area 6 cm2. And if the box contains 7 sticks,
of lengths 1, 4, 2, 1, 3, 3, 2 cm, they may build a pair consisting of a rectangular sail of 6 cm2 and a void triangle.
Finally, if there are 9 sticks in the box, each one of length 10 cm, they can build an equilateral triangle and a
square as their largest pair, with total area 143 cm2 (neglecting fractions of cm2).

You must write a program to help the castaways design their sails.

Input

The input consists of several test cases. The first line of each test case contains a single integer N indicating the
number of wooden sticks in the box (3 ≤ N ≤ 256). Then there are N lines, each one with one single integer x
(1 ≤ x ≤ 256), representing the sizes of the N wooden sticks, measured in centimeters.

The input must be read from standard input.

Output

For each test case, print a single line with an integer indicating the area of the largest pair (as defined above), in
squared centimeters (neglecting decimals), that may be constructed with the N given sticks.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 7

Sample Input

3
3
4
5
7
1
4
1
2
3
2
3
9
10
10
10
10
10
10
10
10
10
3
1
1
8

Sample Output

6
6
143
0

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 8

D: Radiation Alert in Rabbitland
Source file name: radiation.c, radiation.cpp, or radiation.java

Author: R. García, A. Sotelo

A radiation source was recently discovered by some scientists of Rabbitland while they were digging a burrow.
Immediately, King Rabbit ordered the reinforcement of Rabbitland’s boundary using lead barriers, and the
installation of some additional lead barriers inside Rabbitland. Rabbitland’s boundary is defined with a polygon,
and each lead barrier is described with a line segment.

Each lead barrier blocks the radiation, protecting some regions inside Rabbitland. You have been hired by King
Rabbit to calculate the percentage of Rabbitland’s territory that is being irradiated by the radiation source.

Input

The input consists of several test cases. The first line of a test case contains two blank-separated integers N
and M, where N is the number of vertices of the polygon describing the boundary of Rabbitland (3 ≤ N ≤ 16),
and M is the number of additional barriers installed inside Rabbitland (0 ≤ M ≤ 20). The second line of a test
case contains two blank-separated integers xS and yS (0 ≤ xS , yS ≤ 25) indicating the position (xS , yS) where
the radiation source was discovered. Then follow N lines: line i contains exactly two blank-separated integers
xi and yi, where (xi, yi) is the position of the i-th vertex of the polygon describing the boundary of Rabbitland
(0 ≤ xi, yi ≤ 25). Finally follow M lines: line j contains exactly four blank-separated integers x1 j, y1 j, x2 j

and y2 j, where (x1 j, y1 j) and (x2 j, y2 j) are the positions of the endpoints of the line segment that describes the
j-th additional lead barrier installed inside Rabbitland (0 ≤ x1 j, y1 j, x2 j, y2 j ≤ 25, (x1 j, y1 j) , (x2 j, y2 j)). You
may assume that the radiation source and every lead barrier are completely inside the polygon including its
boundary.

The input must be read from standard input.

Output

For each test case, print a single line with a number indicating the percentage of Rabbitland’s territory that is
being irradiated by the radiation source, followed by the percentage sign (‘%’). The answer should be formatted
and approximated to three decimal places. The floating point delimiter must be ‘.’ (i.e., the dot). The rounding
applies towards the nearest neighbor unless both neighbors are equidistant, in which case the result is rounded
up (e.g., 78.3712 is rounded to 78.371; 78.5766 is rounded to 78.577; 78.3745 is rounded to 78.375, etc.).

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 9

The output must be written to standard output.

Sample Input

6 4
6 6
4 0
10 0
10 10
0 10
0 7
4 7
5 8 7 8
5 5 7 3
5 3 7 5
8 6 10 8
4 3
2 2
0 0
0 4
4 4
4 0
0 1 4 1
1 1 3 1
1 2 3 2
4 1
0 0
0 0
4 0
4 4
0 4
0 0 4 4

Sample Output

50.000%
75.000%
100.000%

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 10

E: Eclipsing Gianik Star
Source file name: gianik.c, gianik.cpp, or gianik.java

Author: A. Sotelo

Gianik is a giant pink star in Canis Major constellation at an approximate distance of 700 light years from
our Solar System. Each planet of Gianik’s planetary system follows a trajectory described by a circular orbit
centered at Gianik, whose coordinates (x(t), y(t)) at time t obeys the parametric equations

x (t) = ρ · cos (α + β·t)

y (t) = ρ · sin (α + β·t)

where ρ is a positive integer denoting the radius of the circular orbit, and α + β·t is a linear function with integer
coefficients α,β describing the angle subtended by the planet’s trajectory from time 0 to time t. All angles are
measured in degrees (◦), where one full rotation around Gianik takes 360◦.

An eclipse occurs when Gianik and two distinct planets are located at collinear coordinates at the same time t, so
that Gianik is not visible from the farthest planet because it is eclipsed by the other planet. May you determine
the minimum non-negative integer t such that an eclipse occurs at time t?

Input

The input consists of several test cases. The first line of each test case contains a single integer N indicating
the number of planets of Gianik’s planetary system (2 ≤ N ≤ 300). Each of the next N lines contains three
blank-separated integers ρ, α and β, indicating the parameters that describe the planet’s trajectory around Gianik
according to the statement (1 ≤ ρ ≤ 1000, −1000 < α < 1000, −1000 < β < 1000). You may assume that the
orbits of all N planets have distinct radiuses.

The input must be read from standard input.

Output

For each test case, print a single line with a non-negative integer indicating the minimum time in which an
eclipse occurs in Gianik’s planetary system. If no eclipse occurs at any non-negative time, then print the text
‘GIANIK IS NEVER ECLIPSED’.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 11

Sample Input

2
10 90 2
20 0 4
2
10 90 4
20 0 2
2
10 90 2
20 0 2

Sample Output

45
135
GIANIK IS NEVER ECLIPSED

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 12

F: Funny Cardiologist
Source file name: funny.c, funny.cpp, or funny.java

Author: A. Sotelo

Dr. Zoidberg is a famous cardiologist and comedian that likes to make unpleasant jokes. One of his favorite
jokes is to adulterate cardiograms to make people believe they will die. A cardiogram is defined as the diagram
of a polyline described with a list of N points (x1, y1), (x2, y2), . . . , (xN , yN) with ascending x-coordinates, whose
line segments are drawn between consecutive points. The length of a cardiogram is defined as the sum of the
lengths of each segment drawn on it:

N−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

The technique used by Dr. Zoidberg to adulterate a cardiogram consists of removing exactly K points from its
polyline, where K depends on the seriousness of the patient. Of course, there could be several ways to do that,
but the joke will be the best (in Zoidberg’s opinion!) if the resulting plot is as short as possible in the sense
that it becomes a good approximation to a straight line, that is, if it makes the patient believe he or she is close
to death. To avoid suspicion, Dr. Zoidberg does not remove neither the first point nor the last point from the
polyline.

The cardiogram of a healthy patient.
Length: 36.393.

The first cardiogram removing some K = 2 points.
Length: 24.285.

The first cardiogram removing some K = 9 points.
Length: 20.000.

The last cardiogram corresponds to a patient who may believe he or she possibly will die. Dr. Zoidberg wants to
know the minimum length that can be attained adulterating a cardiogram described by the polyline with points

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 13

(x1, y1), (x2, y2), . . . , (xN , yN), removing exactly K points from that polyline. May you help him?

Input

The input consists of several test cases. The first line of a test case contains two blank-separated integers N
and K, where N is the number of points on the polyline describing the cardiogram (2 ≤ N ≤ 256), and K is the
number of points that Dr. Zoidberg must remove from that polyline (0 ≤ K ≤ N−2). Then follow N lines: line
i contains exactly two blank-separated integers xi and yi, where (xi, yi) is the position of the i-th point of the
polyline describing the cardiogram (0 ≤ xi < 1000, −1000 < yi < 1000). You may assume that the points of the
polyline have ascending x-coordinates (i.e., x1 < x2 < · · · < xn).

The input must be read from standard input.

Output

For each test case, print a single line with the minimum length that can be attained adulterating the cardiogram
using Dr. Zoidberg’s technique. The answer should be formatted and approximated to three decimal places. The
floating point delimiter must be ‘.’ (i.e., the dot). The rounding applies towards the nearest neighbor unless both
neighbors are equidistant, in which case the result is rounded up (e.g., 78.3712 is rounded to 78.371; 78.5766 is
rounded to 78.577; 78.3745 is rounded to 78.375, etc.).

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 14

Sample Input

11 2
0 0
5 0
6 -2
7 3
8 -3
9 0
11 0
12 1
13 -2
14 0
20 0
11 9
0 0
5 0
6 -2
7 3
8 -3
9 0
11 0
12 1
13 -2
14 0
20 0

Sample Output

24.285
20.000

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 15

G: Christmas Lights
Source file name: lights.c, lights.cpp, or lights.java

Author: R. García

Bill has a Christmas Lights String to decorate his house, made with K lights L[1], L[2], . . . , L[K] attached in
sequence to a wire. The behavior of each light is determined by a programmable controller connected to the
wire, turning on and off lights at every second.

Bill has programmed the controller to change the state of the lights during M seconds. He defines a pair of
numbers ai, bi with ai ≤ bi, for each second i (1 ≤ i ≤ M). At second 0, the string of lights is initialized with a
random initial configuration (some lights on and other lights off). At each second i, from 1 to M, the state of all
lights in L[ai .. bi] is simultaneously switched from on to off and vice versa. However, Bill added a curious little
feature to the controller’s algorithm: whenever the ends L[ai] or L[bi] are off, just before the above-described
switching takes place at time i, some more lights in the string can switch states at moment i. In particular, if
L[ai] is off and there is a light, say at li, to the left of ai that is on (and all the lights between li and ai are off),
then the lights in the interval L[li .. ai − 1] will also switch states at moment i. Similarly, if L[bi] is off and there
is a light, say at ri, to the right of bi that is on (and all the lights between bi and ri are off), then the lights in the
interval L[bi + 1 .. ri] will also switch states at moment i.

Suppose that a light turned on is represented with ‘1’ and a light turned off is represented with ‘0’. For example,
consider K = 18, M = 5, a1 = 5, b1 = 12, a2 = 10, b2 = 11, a3 = 5, b3 = 8, a4 = 3, b4 = 6, a5 = 1, and b5 = 17,
with initial configuration 000110010011100000. Note that the state of all lights at each second is:

• 000110010011100000 at second 0.

• 000101101100100000 at second 1.

• 000101101011000000 at second 2.

• 000010010011000000 at second 3.

• 001101100011000000 at second 4.

• 110010011100111110 at second 5.

After several days of operation, Bill suspects that he has created a truly awesome algorithm. For this purpose, he
would like to run multiple trials, with different initial configurations and parameters a, b, but he is afraid the
lights will break due to heavy abuse. Can you help him in building an algorithm for finding the final state of all
lights at second M after each trial?

Input

The first line of the input contains a positive integer T indicating the number of test cases. The first line of a test
case contains two blank-separated integers K and M (2 ≤ K ≤ 106, 0 ≤ M ≤ 104) indicating, respectively, the
number of lights in the string and the number of seconds to consider. The second line contains a hexadecimal
string (using digits ‘0123456789ABCDEF’) without leading zeros, describing the initial configuration of lights
if it is written in binary notation. If the given hexadecimal string requires less than K bits in binary notation,
then complete it with leading zeros to reach K digits. Finally follow M lines: line i contains exactly two
blank-separated integers ai and bi describing the parameters controlling the behavior of the lights at second i
(1 ≤ i ≤ M, 1 ≤ ai ≤ bi ≤ K).

The input must be read from standard input.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 16

Output

For each test case, print a single line with a hexadecimal string (using digits ‘0123456789ABCDEF’) without
leading zeros, describing the state of all lights at second M. You must use the same notation used to codify the
initial configuration of lights.

The output must be written to standard output.

Sample Input

3
18 5
64E0
5 12
10 11
5 8
3 6
1 17
18 0
0
18 1
0
13 16

Sample Output

3273E
0
3C

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 17

H: socialhare
Source file name: hare.c, hare.cpp, or hare.java

Author: C. Rocha

Little Elisa is learning her first words. With the help of her parents and friends, she has been introduced to word
search puzzles in order to practice and acquire new vocabulary. A search word puzzle consists of a rectangular
arrangement of lowercase English characters and a list of words (each consisting of lowercase English characters
too), with the goal of finding as many words from the list as possible in the arrangement of letters.

However, little Elisa thinks of word search puzzles in a more relaxed way: she considers a word w to occur
in a rectangular arrangement of letters if she can find any permutation of w in the rectangular arrangement
(horizontal, vertical or diagonally).

Since little Elisa is a bit of an anarchist and ‘‘women always get the last word in every argument’’, her parents
and friends have designed some word search puzzles so that Elisa can have fun her own way. They are asking
for help in checking if Elisa’s solutions are correct. Can you help?

Input

The input consists of several test cases. The first line of a test case contains three-blank separated integers
R,C,W (1 ≤ R,C,W ≤ 100) denoting the number of rows R and columns C of the rectangular arrangement of
characters, and the number of words W to search for in the game. Each of the following R lines consists of
exactly C lowercase English characters. Then, the next W lines describe the list of words to search for in the
arrangement of characters. Each of these lines contains a non-empty sequence of at most 100 lowercase English
characters.

The input must be read from standard input.

Output

For each test case, output the maximum number of words from the given list of W words that appear, according
to Elisa’s rules, in the rectangular arrangement of R ×C-characters.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 18

Sample Input

10 11 3
entanglerci
alkaksckasj
qwicasasqwb
asososqweqn
gasxahqaqsa
psposrtgppa
uuusasosaah
zxcvbnmclwq
xscdvfbghqr
fsdddllslaq
socialhare
rectangle
bear
2 2 6
ab
cd
ba
ac
aa
da
cb
ae

Sample Output

1
4

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 19

I: Water troubles
Source file name: water.c, water.cpp, water.java, or water.py

Author: M. Sánchez

Because of climate change, the little town of Minca in the Sierra Nevada is facing serious problems with its
water supplies. They were used to get water from the abundant streams, brooks, and small rivers coming down
the mountain, but now all of these carry a lot less water. On top of that, their coffee fields depend on irrigation
machines and require precise amounts of water in order to survive.

Some ingenious hydraulic engineers that heard about Minca’s problems decided to pay them a visit to help them
save their delicate crops. They brought with them a series of gadgets and pipe fittings to divert water streams
and gather just the right amount of water that coffee requires. None of those devices depend on electricity or
fuel, making them perfect for usage in the mountain. The first kind of device was just a tee pipe: depending on
the way it is installed, it combines two streams or divides a stream in two parts (which may transport different
amounts). The second kind of device was a water controlled water pump: it takes a controlling stream of water
on one of its input fittings and augments the other input stream by a factor that depends on the controlling stream.
Finally, there were hydraulic valves that reduce input streams by a factor that also depends on some controlling
water stream.

Everything was joy in Minca because these ingenious devices were going to help the town properly operate its
irrigation machines. Unfortunately, the engineers quickly discovered that, in order to send the proper amount of
water to each field, they would have to combine in creative ways their machines and the flexible and durable
hoses that they use to take water from the streams and to dispose water on them when unused.

In the following figure you can see how they solved the problem of getting 15 liters of water per minute to some
field, considering that they had with them hoses for 6, 3, 2, 5, 20 and 3 l/m. The first tee pipe receives 5 l/m and
6 l/m from the corresponding hoses. Next, a hydraulic pump controlled by a 3 l/m stream feeds 33 l/m to the
next tee pipe, which discards 3 l/m. Finally, the valve is controlled by a 2 l/m stream, taking down its output to
the 15 l/m that the field and its irrigation system requires. The 20 l/m hose was not used. It were used the hoses
for 5, 6, 3, 3 and 2 l/m, in that order.

Your task is to help Mincans and the hydraulic engineers to assemble their devices and hoses in linear sequences
to save the fields. For this, you will receive the required amount of water required by a given field, and the
capacity of the hoses available to grab and dispose water from the brooks and small rivers.

For simplicity, assume that engineers have an unlimited amount of every type of device, that there is a single
irrigation machine in the coffee field, that a tee device that divides a stream always sends the extra water back to
a brook, and that the water flows must always be integers. Also, you do not have to consider the pipes and tubes
used to connect the devices between them, or to connect the devices to the irrigation machine.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 20

Input

The input consists of several test cases. Each test case is described by a single line containing H + 1 blank-
separated integers T, c1, c2, . . . , cH , where T indicates the amount of water required by a certain field in the town
(1 ≤ T ≤ 1015), H is the number of hoses (1 ≤ H ≤ 7), and c1, c2, . . . , cH indicate the capacity of the hoses
available to direct the water (1 ≤ ci ≤ 50 for each 1 ≤ i ≤ H).

The last test case is followed by a line containing a single zero value.

The input must be read from standard input.

Output

For each test case, print a line with a single integer. This integer should indicate the amount of water that may
be sent into the field with an optimal arrangement of the hoses and the devices. If it is impossible to find an
arrangement that sends the exact quantity of water required, your program should find the closest quantity that is
superior to the requirement, or 0 if it is impossible to reach the required amount.

The output must be written to standard output.

Sample Input

15 6 3 2 5 20 3
15 20 5 6 3 3 2
15 5 6 3 3 2
10 1 2 3
8 6 4 5
14 4 3 7 5
11 3 3 3
6 3 3
0

Sample Output

15
15
15
0
9
14
12
6

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 21

J: Wildcards
Source file name: wildcards.c, wildcards.cpp, or wildcards.java

Author: A. Echavarría

Alice and Bob are playing a game: Alice selects a text t and a word w, and then Bob has to say how many times
w occurs in t. However, after a while, Alice realizes that this version of the game is too boring for Bob and
decides to make a modification: in her new version of the game, the wildcard symbol ‘?’ can occur in w any
number of times. Each occurrence of ‘?’ in w can be matched with any character in t.

In the new version of the game, for instance, if the text is t = banana and the word is w = ?a?, then w occurs
twice in t: at position 0 matching ban and at position 2 matching nan. Notice that matches can overlap.

Can you write a program to help Bob solve this new game?

Input

The input consists of several test cases, each one defined by two lines. The first line contains the text t
and the second line contains the word w. The text t consists of lowercase letters from the English alphabet
(1 ≤ |t| ≤ 105), and the word w consists of lowercase letters from the English alphabet and the wildcard
character ‘?’ (1 ≤ |w| ≤ 105). It is guaranteed that there will be at most k wildcard characters in w, where
0 ≤ k ≤ min

(
|w|, 106/|t|

)
.

The input must be read from standard input.

Output

For each test case, print a line with one integer denoting the number of times w appears in t if each wildcard
character matches any character in t.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 22

Sample Input

banana
?a?
bananas
?a?
abide
a??d
abide
a?d
abracadabra
a?a
acisredis
?b
acisredis
??
icpc
world?finals

Sample Output

2
3
1
0
2
0
8
0

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 23

K: Bank Robbery
Source file name: bank.c, bank.cpp, or bank.java

Author: C. Rocha

Arsène Lupin is a gentleman thief and a master of disguise; he has been responsible for heists no right-minded
individual would believe possible. He is also, very much, the ladies’ man.

Lupin is about to drop everything he is currently doing to come to the aid of some of his friends who are planning
a bank robbery in the infamous Kingdom of Aksum: his friends have identified the location of banks they are
willing to rob, as well as the location of the police stations that serve the city. As a matter of fact, they have
come up with a map of the entire city in which bidirectional roads connecting sites and traveling times between
sites have been detailed.

Despite the criminal nature of his activities, Lupin has a strict code he follows in order to avoid tainting his
reputation: he has never been caught by the authorities. In order to help his friends and, at the same time, keep
his well-earned reputation, Lupin is wondering which banks can be robbed so that they are the ones furthest
away from any police station serving the Kingdom of Aksum.

Input

The input consists of several test cases. Each test case begins with 4 blank-separated integer numbers N,M, B, P
(1 ≤ N ≤ 1 000, 0 ≤ M, 1 ≤ B ≤ N, 0 ≤ P < N) denoting, respectively, the number of sites in the city, the
number of roads in the city, the number of banks in the city, and the number of police stations in the city. The next
M lines contain each three blank-separated integers U,V,T (0 ≤ U < N, 0 ≤ V < N, U , V , 0 ≤ T ≤ 10 000)
denoting that there is a road between sites U and V which takes T time units to transit. The next line contains B
blank-separated and pairwise distinct site numbers identifying the location of banks. If P , 0, then follows a line
with P blank-separated and pairwise distinct site numbers identifying the location of police stations. You can
assume that a bank and a police station are never located at the same site.

The input must be read from standard input.

Output

For each test case, output two lines. The first line should contain two blank-separated figures S , E denoting,
respectively, the number of banks furthest away from any police station and the minimum time it would take to
transit from any police station to these banks. If E is not an integer number, then output ‘*’ instead. The second
line should contain S blank-separated integers, in ascending order, corresponding to the sites where banks are
located with minimum time from any police station being exactly E time units.

The output must be written to standard output.

2016 ACIS REDIS - XXX Colombian Programming Contest - ACM ICPC 24

Sample Input

5 6 2 1
0 1 5
0 2 2
1 3 6
1 4 1
2 3 4
3 4 3
1 4
2
5 4 2 1
0 1 5
0 2 2
1 3 6
2 3 4
1 4
2
5 6 2 2
0 1 5
0 2 2
1 3 6
1 4 1
2 3 4
3 4 3
1 4
2 3

Sample Output

2 7
1 4
1 *
4
1 4
1

	A: ACIS, A Contagious vIruS
	B: Binary Land
	C: Castaways
	D: Radiation Alert in Rabbitland
	E: Eclipsing Gianik Star
	F: Funny Cardiologist
	G: Christmas Lights
	H: socialhare
	I: Water troubles
	J: Wildcards
	K: Bank Robbery

