Problem D. Standard Deviation

```
Input: standard
Output: standard
Author(s): Hugo Humberto Morales Peña - UTP Colombia
```

In mathematics, the standard deviation of a set of n integer numbers is defined as:

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

where \bar{x} is the average of the set of n integer numbers for which the standard deviation is being calculated. That average is calculated as:

$$
\bar{x}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}
$$

The task is to calculate, in an efficient way, the standard deviation of the first n odd positive integer numbers.

Input

There are several test cases in the input. Each test case consists of a single line containing a positive integer number $n\left(2 \leq n \leq 10^{6}\right)$ which indicates the amount of consecutive odd numbers (starting from one) that should be considered when calculating the standard deviation. The last test case has a value of 0 , for which you shouldn't generate any response.

Output

For each test case, you should print a single line containing a floating point number: the standard deviation of the first n odd positive numbers. The absolute error of your answer should not be greater than 10^{-6}.

Example

Input	Output
10	6.055301
100	58.022984
1000	577.638872
10000	5773.791360
100000	57735.315593
1000000	577350.557865
0	

Use fast I/O methods

