

Problem D. Standard Deviation

Input:	standard
Output:	standard
Author(s):	Hugo Humberto Morales Peña - UTP Colombia

In mathematics, the standard deviation of a set of n integer numbers is defined as:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

where \overline{x} is the average of the set of *n* integer numbers for which the standard deviation is being calculated. That average is calculated as:

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

The task is to calculate, in an efficient way, the standard deviation of the first n odd positive integer numbers.

Input

There are several test cases in the input. Each test case consists of a single line containing a positive integer number n ($2 \le n \le 10^6$) which indicates the amount of consecutive odd numbers (starting from one) that should be considered when calculating the standard deviation. The last test case has a value of 0, for which you shouldn't generate any response.

Output

For each test case, you should print a single line containing a floating point number: the standard deviation of the first n odd positive numbers. The absolute error of your answer should not be greater than 10^{-6} .

Example

Input	Output	
10	6.055301	
100	58.022984	
1000	577.638872	
10000	5773.791360	
100000	57735.315593	
1000000	577350.557865	
0		

Use fast \mathbf{I}/\mathbf{O} methods