
18

L FFoolldd tthhee SSttrriinngg
Input: Standard Input

Output: Standard Output

Alice took File Compression as her term project. Supervisor suggested her to do everything on her own. She

devised her own algorithm for compression. Her algorithm converts any file to its string representation S. Then

she encodes the string with series of operations. She starts processing the string from its end. At any step she

does any of the following two operations:

1. Encode the last character of the remaining non-encoded string. This last character encoding needs x unit of

memory.

Encode(S[1, 2, 3…., n]) = Encode(S[1, 2, 3…., n-1]) + information of S[n].

Where n is the length of string S.

2. Encode a suffix of the remaining non-encoded string. She can encode any suffix that satisfies the folding

property. Suffix starting at index i has the folding property if it’s the mirror of a substring ending at index i-1. For

example, both suffix(“aabbaabba”, 8) and suffix(“aabbaabba”, 6) have the folding property. Any possible suffix

encoding needs y unit of memory. Here, suffix(S, i) is the suffix of string S starting at index i.

Encode(S*1,2,3… i-1, i, … n-1,n]) = Encode(S*1,2,3… i-1]) + information of suffix(S, i).

Where, suffix(S, i) satisfies the folding property.

Alice wants to know the performance of her compression algorithm. She has collection of files for performance

testing. She converted each file to its corresponding string representation. Now, needs your help in determining

the total memory unit each file needs after compression.

Input

Input starts with a line with number of test cases T (1 ≤ T ≤ 25). Each of the following T lines has information

about a single file. Each line has two integer x, y (1 ≤ x, y ≤ 1000) and a string S (1 ≤ | S | ≤ 1000000). S comprises

only of lowercase letter.

Warning: Dataset of this problem is large; please use faster input/output methods.

Output
Output contains T lines. Each of them is in format “Case t: c”. t is the test case number and c is the amount of
memory needed by the compressed string.

Sample Input Output for Sample Input
2
2 1
aabbaa
1 1
aabbaabba

Case 1: 6
Case 2: 5

Test Case Analysis: Optimal compression steps of case 1 are “aabbaa” -> “aab”, “aab” -> “aa”, “aa” ->

“a”, “a” -> “”. First and third step require cost 1 because of suffix encoding. Second and fourth step

require cost 2. So, the total cost is 1 + 2 + 1 + 2 = 6.

