| BaSP Of MI | aem |
| :---: | :---: | :---: |

We know, if we want to check whether a decimal number is divisible by $\mathbf{3}$, we need to find the sum of digits of that number. If the sum is divisible by $\mathbf{3}$, then the original number will also be divisible by 3.

It took me a while to prove this. And then I realized this is true not only for $\mathbf{3}$ but for some other numbers as well Sometimes not only for decimals but also for numbers in other bases as well. Can you find them?

In particular, given a particular divisor \mathbf{D}, you will have to find how many valid different bases B, less or equal to BMAX, are possible such that when we represent any number N in base B and the sum of digits of N is S, the following implication is true:

N is divisible by D IF AND ONLY IF S is divisible by D.

For example, if $\mathbf{B M A X}=\mathbf{1 0}, \mathbf{D = 3}$, the answer is $\mathbf{3}$. The bases are $\mathbf{4 , 7}$ and $\mathbf{1 0}$.

Input

First line will contain $T(T \leq 10000)$, no of test cases. T lines will follow each with two integers BMAX $(\mathbf{2} \leq \operatorname{BMAX} \leq$ $1 \mathbf{1 0}^{\mathbf{1 8}}$) and $\mathbf{D}\left(\mathbf{1} \leq \mathbf{D} \leq 1 \mathbf{0}^{\mathbf{1 8}}\right)$. You can assume that base of a number system is positive and not less than 2.

Output

For each case print one line, "Case \mathbf{C} : \mathbf{A} ", where \mathbf{C} is the case no and \mathbf{A} is the required answer. Look at the output for sample input for details.

Sample Input

2

103
203

Output for Sample Input
Case 1: 3
Case 2: 6

