| Mris RiNA |
| :---: | :---: | :---: |
| Input: Standard Input |
| Output: Standard Output |\quad acm

The whole world has become worried about the rapid spread of a virus. Scientists need to understand the folding of RNA of that virus so that they can have more information about its structure.

The basic RNA-folding problem is defined by a string \mathbf{S} of length \mathbf{n} over the four-letter alphabet $\{\mathbf{A}, \mathbf{U}, \mathbf{C}, \mathbf{G}\}$, and an integer \mathbf{d} (distance parameter). Each letter in this alphabet represents an RNA nucleotide. Nucleotides \mathbf{A} and \mathbf{U} are called complimentary as are the nucleotides \mathbf{C} and \mathbf{G}. A matching consists of a set \mathbf{M} of disjoint pairs of positions of \mathbf{S}, i.e. in a set \mathbf{M} no position i can be paired with two different positions \mathbf{j} and \mathbf{j}^{\prime}. If pair (\mathbf{i}, \mathbf{j}) is in \mathbf{M}, then the nucleotide at i-th position is said to match the nucleotide at position \mathbf{j}. A match is a permitted match if the nucleotides at sites \mathbf{i} and \mathbf{j} are complimentary, $\mathbf{i}<\mathbf{j}$ and $|\mathbf{i}-\mathbf{j}|>\mathbf{d}$. A matching \mathbf{M} is non-crossing if and only if it does not contain any four sites $\mathbf{i}<\mathbf{i}^{\prime}<\mathbf{j}<\mathbf{j}^{\prime}$ where (\mathbf{i}, \mathbf{j}) and $\left(\mathbf{i}^{\prime}, \mathbf{j}^{\prime}\right)$ are matches in \mathbf{M}. Finally, a permitted matching \mathbf{M} is a matching that is non-crossing, where each match in \mathbf{M} is a permitted match. The basic RNA-folding problem is to find a permitted matching of maximum cardinality.

In this problem, you need to find the maximum cardinality of a permitted matching and the number of different sets \mathbf{M} of that maximum cardinality. A set \mathbf{M} is different from another set \mathbf{M}^{\prime} if there exists at least one pair (i, \mathbf{j}) in \mathbf{M} and $\left(\mathbf{i}^{\prime}, \mathbf{j}^{\prime}\right)$ in \mathbf{M}^{\prime} such that either \mathbf{i} and \mathbf{i}^{\prime} or \mathbf{j} and \mathbf{j}^{\prime} are different.

Input

The first line of input file contains the number of test cases, $\mathbf{T}(\mathbf{1} \leq \mathbf{T} \leq \mathbf{8 0})$. Then T cases follow:

Each case consists of two lines. The first line contains one integer: $\mathbf{d}(\mathbf{O} \leq \mathbf{d} \leq|\mathbf{S}|)$. Then the second line contains the string $\mathbf{S}(\mathbf{1} \leq|\mathbf{S}| \leq \mathbf{2 5 0})$. It will contain only the uppercase characters $\{\mathbf{A}, \mathbf{U}, \mathbf{C}, \mathbf{G}\}$.

Output

For each case, print "Case $\langle\mathbf{x}>$: $\langle\mathbf{y} \mathbf{z}>$ " in a separate line, where \mathbf{x} is the case number, \mathbf{y} is the maximum cardinality and \mathbf{z} is the number of sets with maximum cardinality. As the value of \mathbf{z} can be very large, print \mathbf{z} modulo 10007.

Sample Input

```
2
1
AUA
4
GGACCUUUUGGACGC
```


Explanation of Sample cases

For $1^{\text {st }}$ case, there is no pair of positions which satisfies the conditions of permitted match, i.e. empty set is the only possible answer.
For $2^{\text {nd }}$ case, the matches are shown below where the first position of a pair is denoted by '(' and the other position is denoted by ')':
GGACCUUUUGGACGC
((.((....)).).)

This is the only possible set with 4 permitted matches: $\{(1,15),(2,13),(4,11),(5,10)\}$.

