Given the value of N, you will have to find the value of S. The definition of S is given in the following code:

```
S=0;
for(i=1;i<=N;i++)
    for(j=1;j<=N;j++)
        if((N % i)==0 && (N % j)==0)
            S+=gcd(i,j);
```

/*Here $\operatorname{gcd}()$ is a function that finds the greatest common divisor of the two input numbers. \% is standard remainder sign from $C / C++/ j a v a$ syntax where $\mathbf{a} \% \mathbf{b}$ is the remainder of a modulo \mathbf{b}, so ($\mathbf{n} \% \mathbf{i}$) $==\mathbf{0} \& \&(\mathbf{n} \% \mathbf{j})=\mathbf{0}$ means \mathbf{N} is divisible by both \mathbf{i} and $\mathbf{j}^{*} /$

Input

First line of the input is $\mathbf{T}(\mathbf{T} \mathbf{1 0 0})$, then T test cases follows in next T lines. Each line contains an integer $\mathbf{N}\left(\mathbf{1} \leq \mathbf{N} \leq 100000000000000\right.$ or $\left.10^{\mathbf{1 4}}\right)$. The meaning of \mathbf{N} is given in the problem statement.

Output

For each test case print a line in "Case I: S" format where I is case number and \mathbf{S} is the value for the \mathbf{N} of this case. The value of \mathbf{S} will fit in a 64-bit signed integer.

Sample Input
12
1
2
3
4
5
6
7
8
9
10
1000
10000

Output for Sample Input

Case 1: 1
Case 2: 5
Case 3: 6
Case 4: 15
Case 5: 8
Case 6: 30
Case 7: 10
Case 8: 37
Case 9: 23
Case 10: 40
Case 11: 8584
Case 12: 97027

