A - Prove Them All

Source file name: all.c, all.cpp, or all.java Author(s): Camilo Rocha

Alex is a developer at the *Formal Methods Inc*. central office. Everyday Alex is challenged with new practical problems related to automated reasoning. Along with her team, Alex is currently working on new features for a computational theorem prover called "Prove Them All" (or PTA for short). The PTA inference engine is based, mainly, on the *modus ponens* inference rule:

$$\frac{\psi, \quad (\psi \to \phi)}{\therefore \phi}$$

This rule is commonly used in the following way: for any pair of formulae ϕ and ψ , if there is a proof of the formula ψ and a proof of the logical implication ($\psi \rightarrow \phi$), then there is a proof of ϕ . In other words, if ψ and ($\psi \rightarrow \phi$) are theorems, then ϕ is a theorem too.

Today's challenge for Alex and her team is as follows: given a collection of formulae Γ and some relationships among them in the form of logical implication, what is the minimum number of formulae in Γ that need to be proven (outside of PTA) so that the rest of formulae in Γ can be proven automatically using only modus ponens?

Input

The input consists of several test cases. The first line of the input contains a non-negative integer indicating the number of test cases. Each test case begins with a line containing two blank-separated integers *m* and *n* ($1 \le m \le 10000$ and $0 \le n \le 100000$), where *m* is the number of formulae in Γ of the form ϕ_a and *n* the number of logical implications which have been proven between some of these formulae. The next *n* lines contain each two blank-separated integers *a* and *b* ($1 \le a, b \le m$), indicating that ($\phi_a \rightarrow \phi_b$) is a proven logical implication. Each test case in the input is followed by a blank line.

The input must be read from standard input.

Output

For each test case, output one line with the format "Case k: c" where k is the case number starting with 1 and c is the minimum number of formulae in Γ that need to be proven outside of PTA so that the rest of the formulae in Γ can be proven automatically using only modus ponens.

The output must be written to standard output.

Sample Input	Sample Output
1	Case 1: 2
4 4	
1 2	
1 3	
4 2	
4 3	