
Colombian Collegiate Programming League - CCPL 2016 @CCPL2003

A - Prove Them All
Source file name: all.c, all.cpp, or all.java

Author(s): Camilo Rocha

Alex is a developer at the Formal Methods Inc. central office. Everyday Alex is challenged with new practical
problems related to automated reasoning. Along with her team, Alex is currently working on new features for a
computational theorem prover called “Prove Them All” (or PTA for short). The PTA inference engine is based,
mainly, on the modus ponens inference rule:

ψ, (ψ→ φ)
∴ φ

This rule is commonly used in the following way: for any pair of formulae φ and ψ, if there is a proof of the
formula ψ and a proof of the logical implication (ψ → φ), then there is a proof of φ. In other words, if ψ and
(ψ→ φ) are theorems, then φ is a theorem too.

Today’s challenge for Alex and her team is as follows: given a collection of formulae Γ and some relationships
among them in the form of logical implication, what is the minimum number of formulae in Γ that need to
be proven (outside of PTA) so that the rest of formulae in Γ can be proven automatically using only modus
ponens?

Input

The input consists of several test cases. The first line of the input contains a non-negative integer indicating
the number of test cases. Each test case begins with a line containing two blank-separated integers m and n
(1 ≤ m ≤ 10000 and 0 ≤ n ≤ 100000), where m is the number of formulae in Γ of the form φa and n the number
of logical implications which have been proven between some of these formulae. The next n lines contain each
two blank-separated integers a and b (1 ≤ a, b ≤ m), indicating that (φa → φb) is a proven logical implication.
Each test case in the input is followed by a blank line.

The input must be read from standard input.

Output

For each test case, output one line with the format “Case k: c” where k is the case number starting with 1 and
c is the minimum number of formulae in Γ that need to be proven outside of PTA so that the rest of the formulae
in Γ can be proven automatically using only modus ponens.

The output must be written to standard output.

Sample Input

1

4 4

1 2

1 3

4 2

4 3

Sample Output

Case 1: 2

1


