Discovering Paths

Given a grid with R rows and C columns, you are currently at $(0,0)$ and you want to go to the position ($R-1, C-1$). You have only two kind of movement allowed. From any position (i, j) you can go to either ($i+1, j$) or ($i, j+1$). You need to find the number of ways you can go to ($R-1, C-1$) from (0,0). Easy, right? But here's is a slight problem. All the cells are not available all the time. So while counting the number of ways you need to consider that you can never step into a cell which is not available right now.

Input:

First line will contain an integer $\boldsymbol{T}(1<=\boldsymbol{T}<=10)$, which is the number of test cases. Each case starts with a line $\boldsymbol{R}, \boldsymbol{C}$ and \boldsymbol{Q}. Here, $1<=\boldsymbol{R}, \boldsymbol{C}<=1000$ and $1<=\boldsymbol{Q}<=10000$. Then, \boldsymbol{Q} queries follow, each with four integers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$. This means the cells inside the rectangle with lower left corner at ($\boldsymbol{a}, \boldsymbol{b}$) and upper right corner at ($\boldsymbol{c}, \boldsymbol{d}$) are not available. All the coordinates are given in row major order with 0 -based indexing. The lowermost and leftmost point is considered to be $(0,0)$.

Output:

For each case print a line "Case T ", where T is the case number. For each query in a case, print 3 spaces and then "Query X : W ", where X is query number and W is the number of ways possible for that particular query. Answer needs to be in modulo 912. Check sample input and output for details.

Example:

Sample Input	Sample Output
1	Case 1
552	Query 1: 10
$\begin{array}{llll}1 & 1 & 2\end{array}$	Query 2: 5
0123	

Problem Setter - Hasnain Heickal
Alternate Writer - Muhammad Ridowan

