Fraction and Sequence

An infinite integer sequence (S) can be generated from the following quadratic equation

$$
\begin{gathered}
\mathbf{S}(\mathbf{x})=\mathbf{a x ^ { 2 } + b x + c} \quad[a, b, c \text { are non-negative integers }] \\
\text { and } \mathbf{x}=0 \rightarrow \boldsymbol{\infty}(\mathbf{x} \text { is integer })
\end{gathered}
$$

$\mathbf{S}(\mathbf{x})$ is the $\mathbf{x}^{\text {th }}$ element of sequence \mathbf{S}.
For example, if $\mathbf{a}=\mathbf{0}, \mathbf{b}=1$ and $\mathbf{c}=0$, then $\mathbf{S}(\mathbf{x})=\mathbf{x}$
So the sequence will be: $0,1,2,3,4,5,6,7,8,9,10 \ldots \infty$
A fraction p / q (p and q are relatively prime) is associated with the sequence \mathbf{S} in such way that

$$
\begin{array}{cl}
\qquad \frac{p}{q}=\sum_{x=0}^{\infty} S(x)\left(\frac{1}{10}\right)^{X+1} & 0.0+ \\
& 0.01+ \\
& 0.002+ \\
& 0.0003+ \\
& 0.00004+ \\
\text { Here sequence } 0,1,2,3,4,5,6,7,8,9,10 \ldots \infty \text { is associated } & 0.000005+ \\
& 0.0000006+
\end{array}
$$

with fraction $0.00000007+$
$\frac{1}{81}=\frac{0}{10}+\frac{1}{10^{2}}+\frac{2}{10^{3}}+\frac{3}{10^{4}}+\cdots=0.0123456790 \ldots$
0.000000008 +
$0.0000000009+$
(explained in right)

In summary, for a given triplet $\mathbf{a}, \mathbf{b}, \mathbf{c}$ there will be a sequence \mathbf{S} and for a sequence \mathbf{S} there will be a fraction p / q

But for this problem fraction \mathbf{p} / \mathbf{q} will be given. You have to find out how many integer triples (a, b, c) exist for some given limit L where $0 \leq a, b, c \leq L$.

Input

Given $\mathbf{T}\left(\leq 10^{\wedge} 4\right)$ denoting number of test cases. Each case consists of $\mathbf{3}$ positive integers p, q and \mathbf{L}.
\mathbf{p} and \mathbf{q} are relatively prime to each other.
L is the maximum value for $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Denominator $\mathbf{q}>1$ and $\mathbf{p}, \mathbf{q} \leq 10^{\wedge} 7$ and $\mathbf{L} \leq 10^{\wedge} 5$

Output

You have to report the number of integer triples ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) that can be formed where $0 \leq a, b$, $\mathbf{c} \leq$ L. See sample Input output for format.

Sample Input	Sample Output
3	Case 1: 1
181100	Case 2: 7
2320	Case 3: 21
23100000	

Problem Setter: Masud Rashid
Alternate Writer: Syed Shahriar Manjur

