Fibonacci Triangle

Given some sticks with length equal to a Fibonacci number, for example 2, 3, 5, 8 etc. You have to make triangle with positive area using these sticks. One stick can be used at most once (for making only one triangle). Nth Fibonacci number is $\mathrm{F}(\mathrm{N})$.
$F(1)=2$
$F(2)=3$
$F(n)=F(n-1)+F(n-2)$ for $n>=3$

Input

Given $\mathbf{T}<=\mathbf{1 0 0}$ denoting test cases. Each case starts with a positive integer $\mathbf{n}<=\mathbf{1 0 0 0}$. Then, there will be \mathbf{n} non-negative integers, \mathbf{i}-th integer denote the number of sticks with side length $\mathrm{F}(\mathrm{i})$.

Output

For each case you have to print an integer in a line denoting the maximum number of triangles (with positive area) you can form using these sticks. The number is guaranteed to be less than 10^{8}.

Sample Input	Sample Output
3	3
3	3
162	3
3	
262	
3	
171	

Problem Setter: Syed Shahriar Manjur
Alternate Writer: Nafis Ahmed, M Sazzadul Hoque

